Stem Cell Research

Updated July 26, 2002

Judith A. Johnson
Specialist in Life Sciences
Domestic Social Policy Division
Summary

Embryonic stem cells have the ability to develop into virtually any cell in the body, and may have the potential to treat medical conditions such as diabetes and Parkinson’s disease. On August 9, 2001, President Bush announced that for the first time federal funds will be used to support research on human embryonic stem cells, but funding will be limited to “existing stem cell lines.” The National Institutes of Health (NIH) has established the Human Embryonic Stem Cell Registry which lists 14 universities and companies that have derived a total of 78 human embryonic stem cell lines which are eligible for use in federally funded research. However, perhaps only a third of the stem cell lines are fully characterized and ready to be used in research. Scientists are concerned about the quality, longevity, availability and terms of use of the eligible stem cell lines.

In the past, President Bush stated he did not support federal funding of research on stem cells derived from either human embryos or fetal tissue obtained via abortion, but would support research using cells derived from fetal tissue obtained via miscarriages. However, many scientists contend that such tissue is for the most part unsuitable for research due to the condition of the tissue or the presence of genetic defects. Others point to the potential of adult stem cells obtained from tissues such as bone marrow. They argue that adult stem cells should be pursued instead of embryonic stem cells because they believe the derivation of stem cells from either embryos or aborted fetuses is ethically unacceptable. Other scientists believe adult stem cells should not be the sole target of research because of important scientific and technical limitations. In September 2001, the National Academy of Sciences published a report on the promise of stem cell research and in January 2002, a second report on the related topic of human cloning. In addition, the President’s Council on Bioethics has discussed the ethical issues surrounding the use of embryonic stem cells and human cloning and released its report on July 11, 2002.

The 107th Congress has begun consideration of several bills on the topic of stem cell research and the related area of human cloning. On July 31, 2001, the House rejected H.R. 2172 (Greenwood) and passed H.R. 2505 (Weldon). H.R. 2172 would ban human cloning only when it is used in human reproduction. In contrast, H.R. 2505 would ban the process of human cloning when it is used for reproductive purposes as well as research and therapeutic uses of human cloning which would involve stem cells. S. 1899 (Brownback) is the companion bill to H.R. 2505. On April 10, 2002, President Bush announced his support for S. 1899 and 40 Nobel Laureates, who are in favor of nuclear transplantation technology for research and therapeutic purposes, announced their opposition to the Brownback bill. Senators Arlen Specter, Dianne Feinstein, Orrin Hatch and Edward Kennedy introduced S. 2439 on April 30, 2002. S. 2439 would prohibit human reproductive cloning while allowing cloning for medical research purposes, including stem cell research. This report, which will be updated as needed, discusses the status of research and key issues associated with human embryonic stem cells.
Stem Cell Research

Background: Basic Research and Potential Applications

Basic Research. Although most cells within an animal or human being are committed to fulfilling a single function in an organ like the skin or heart, a unique and important set of cells exists that is not so specialized. These *stem cells* – cells that retain the ability to become many or all of the different cell types in the body – play a critical role in repairing organs and body tissues throughout life. Although the term “stem cells” refers to these repair cells within an adult organism, a more fundamental variety of stem cells is found in the early stage embryo. These embryonic stem cells may have a greater ability to become different types of body cells than adult stem cells.

The earliest embryonic stem cells are referred to as *totipotent*, indicating that they can develop into an entire organism because they can produce both the embryo and the tissues required to support it in the uterus. Later in development, embryonic stem cells lose the ability to form these supporting tissues, but are still able to develop into almost any cell type found in the body. These *pluripotent* embryonic stem cells are the current focus of intense research interest.

Possible Sources of Stem Cells

<table>
<thead>
<tr>
<th>Source</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>– 1-week-old embryos created via IVF for the treatment of infertility</td>
<td></td>
</tr>
<tr>
<td>– 5- to 9-week-old embryos or fetuses obtained through elective abortion</td>
<td></td>
</tr>
<tr>
<td>– embryos created via IVF for research purposes</td>
<td></td>
</tr>
<tr>
<td>– embryos created via SCNT (somatic cell nuclear transfer, or cloning)</td>
<td></td>
</tr>
<tr>
<td>– adult tissues (bone marrow, umbilical cord blood)</td>
<td></td>
</tr>
</tbody>
</table>

Embryonic stem cells were first isolated from mice in 1981, and until recently, scientists have used only animal embryonic stem cells in research. In November 1998, two groups published the results of their work on human stem cells from embryos or fetuses. In both cases, the embryos and fetuses were donated for research purposes following a process of informed consent. University of Wisconsin researchers derived stem cells from 1-week-old embryos, also called blastocysts.

1 For human development, the term embryo is used for the first 8 weeks after fertilization, and fetus for the 9th week through birth. In contrast, HHS regulations define fetus as “the product of conception from the time of implantation.” (45 CFR 46.203)
produced via *in vitro* fertilization (IVF) for the treatment of infertility. Because the stem cells are located within the embryo, the process of removing the cells destroys the embryo. Johns Hopkins University investigators derived cells with very similar properties from 5- to 9-week-old embryos or fetuses obtained through elective abortions.

The Jones Institute for Reproductive Medicine, located in Norfolk, Virginia, announced in July 2001 that it had created human embryos via IVF for the purpose of deriving human embryonic stem cells. A total of 162 oocytes (eggs) from 12 women were collected and fertilized with sperm donated by two men; 110 fertilized eggs developed, of which 40 developed to the blastocyst stage. The inner cell masses were removed from the blastocysts resulting in three healthy embryonic stem cell lines. Each woman was paid from $1500 to $2000 for undergoing the egg donation procedure.

Although the Jones Institute work, which was begun in 1997, did not represent a research advance, according to experts in academia and industry, it is thought to be the first time in the United States that a human embryo had been created solely for the purpose of harvesting stem cells for research rather than for the treatment of infertile couples. A representative of the Jones Institute, Dr. William E. Gibbons, stated that several ethics panels approved the work, and contended that such “fresh”

2 IVF embryos that are produced in excess of need are usually frozen in liquid nitrogen for future use by the couple. If the couple decides that their family is complete, they may elect to discard the embryos, donate the embryos for research, or allow another couple to adopt the embryo.

embryos may have advantages over the frozen embryos remaining after infertility treatment. Unlike couples utilizing fertility clinics, the egg donors were younger, “possibly yielding more robust embryos.” The egg and sperm donors underwent psychological and medical evaluation and were informed of the research goals. In January 2002, Dr. Gibbons announced that although the Jones Institute intends to continue to study stem cells, because of political pressure it will no longer recruit human egg donors in order to produce stem cells.\(^5\) Instead, the Jones Institute intends to focus on other methods to create cells for disease treatment.

Figure 2: Stem Cells via Somatic Cell Nuclear Transfer

Another potential source of embryonic stem cells is somatic\(^6\) cell nuclear transfer (SCNT), also referred to as cloning. In February 1997 scientists in Scotland announced that they had used this procedure in 1996 to produce Dolly, the sheep. In SCNT, the nucleus of an egg is removed and replaced by the nucleus from a mature body cell, such as a skin cell. The cell created via SCNT would be allowed to reach the 1-week (blastocyst) stage and the stem cells would then be removed, as in the University of Wisconsin work.

In November 2001, Advanced Cell Technology (ACT) of Massachusetts announced that it had created the world’s first human embryos produced via cloning.\(^7\) The stated goal of ACT’s work is not to produce a cloned human baby (which requires implantation of the cloned embryo into a woman’s uterus), but human embryonic stem cells.\(^8\) Other research groups have been successful in deriving stem cells from mice and cattle using SCNT. ACT used two techniques to produce human

\(^6\) A somatic cell is a body cell, as opposed to a germ cell, which is an egg or sperm cell.

\(^8\) For further information, see CRS Report RL31358, *Human Cloning*, by Judith A. Johnson.
embryos — SCNT and a second process called parthenogenesis. ACT researchers obtained eggs from seven women, ages 24 to 32, who were paid $3000 to $5000.

In the SCNT approach, ACT scientists removed the nucleus from 19 eggs and replaced it with a nucleus from another adult cell. For 11 of the eggs, the nucleus came from a skin cell, for the remaining eight eggs, from cells which cling to the egg and are called cumulus cells. None of the eggs that received a skin cell nucleus divided; seven of the eggs with the cumulus cell nucleus began to divide. Two embryos divided into four cells each, and one embryo divided into six cells before division stopped. In parthenogenesis, an egg cell is treated with chemicals causing it to divide without being fertilized by a sperm. ACT exposed 22 human eggs to the chemicals. After 5 days, six eggs had matured into a larger mass of cells before division stopped. None of the embryos developed by ACT through either of the two techniques divided sufficiently to produce stem cells. A California biotechnology company, Geron Corporation, is also working on stem cells created via SCNT.9

An alternate SCNT approach is the fusion of adult human cells with egg cells of other animals. In 1996, researchers at the University of Massachusetts fused a human cheek cell with a cow egg cell. The resulting hybrid cell had “embryo-like” characteristics and was generated for the purpose of making stem cells. This method was at one time being pursued by Advanced Cell Technology Co.10

Stem cells obtained from adult organisms are also the focus of research. There have been a number of recent publications on adult stem cells from a variety of different sources, such as bone marrow and the umbilical cord following birth. In addition, a number of private companies (such as ViaCell, MorphoGen, StemSource, NeuralStem) are working on therapeutic uses of adult stem cells, and one company, Osiris Therapeutics, has four clinical trial programs underway.11 Some advocate that adult stem cell research should be pursued instead of embryonic stem cells because they believe the derivation of stem cells from either IVF embryos or aborted fetuses is ethically unacceptable.

However, other scientists believe adult stem cells should not be the sole target of research because of important scientific and technical limitations. Adult stem cells may not be as long lived or capable of as many cell divisions as embryonic stem cells. Also, adult stem cells may not be as versatile in developing into various types of tissue as embryonic stem cells, and the location and rarity of the cells in the body might rule out safe and easy access. For these reasons, many scientists argue that both adult and embryonic stem cells should be the subject of research, allowing for a comparison of their various capabilities.

Potential Applications. Stem cell research was chosen by *Science* magazine in 1999 as its “breakthrough of the year.” Stem cells provide the opportunity to study the growth and differentiation of individual cells into tissues. Understanding these processes could provide insights into the causes of birth defects, genetic abnormalities, and other disease states. If normal development were better understood, it might be possible to prevent or correct some of these conditions.

Stem cells could be used to produce large amounts of one cell type to test new drugs for effectiveness and chemicals for toxicity. Stem cells might be transplanted into the body to treat disease (diabetes, Parkinson’s disease) or injury (e.g., spinal cord). The damaging side effects of medical treatments might be repaired with stem cell treatment. For example, cancer chemotherapy destroys immune cells in patients making it difficult to fight off a broad range of diseases; correcting this adverse effect would be a major advance.

Before stem cells can be applied to human medical problems, substantial advances in basic cell biology and clinical technique are required. In addition, the future regulatory decisions that will need to be made by a federal agency, such as the Food and Drug Administration (FDA) Center for Biologics Evaluation and Research (CBER), on individually created tissue-based therapies resulting from stem cell research promise to be extremely challenging. The potential benefits mentioned previously are likely only after many more years of research. Technical hurdles include developing the ability to control the differentiation of stem cells into a desired cell type (like a heart or nerve cell) and ensure that uncontrolled development, such as a cancerous tumor, does not occur. If stem cells are to be used for transplantation, the problem of immune rejection must also be overcome. Some scientists think that the creation of many more embryonic stem cell lines will eventually account for all the various immunological types needed for use in tissue transplantation therapy. Others envision the eventual development of a “universal donor” type of stem cell tissue, analogous to a universal blood donor.

Other scientists point out, however, that if the SCNT technique (cloning) was employed using a cell nucleus from the patient, stem cells created via this method would be genetically identical to the patient, would presumably be recognized by the patient’s immune system, and thus would avoid any tissue rejection problems that could occur in other stem cell therapeutic approaches. Because of this, many scientists believe that the SCNT technique may provide the best hope of eventually treating patients using stem cell for tissue transplantation. As mentioned in the previous section, ACT intends to derive stem cells from human embryos to develop new therapies for disease treatment.
Bush Administration Decision on Stem Cell Research

Stem Cell Speech. On August 9, 2001, President Bush announced that for the first time federal funds will be used to support research on human embryonic stem cells but funding will be limited to “existing stem cell lines where the life and death decision has already been made.” According to the speech, the decision “allows us to explore the promise and potential of stem cell research without crossing a fundamental moral line, by providing taxpayer funding that would sanction or encourage further destruction of human embryos that have at least the potential for life.” The President also stated that in FY2001, the federal government would spend $250 million on research involving stem cells from other sources, such as umbilical cord blood, placenta, adult and animal tissues, “which do not involve the same moral dilemma.”

A White House Fact Sheet provided further clarification of the President’s remarks. According to the fact sheet, federal funds will only be used for research on existing stem cell lines that were derived: (1) with the informed consent of the donors; (2) from excess embryos created solely for reproductive purposes; and (3) without any financial inducements to the donors. NIH will examine the derivation of all existing stem cell lines and create a registry of those lines that satisfy these criteria. According to the White House, this will ensure that federal funds are used to support only stem cell research that is scientifically sound, legal, and ethical. Federal funds will not be used for: (1) the derivation or use of stem cell lines derived from newly destroyed embryos; (2) the creation of any human embryos for research purposes; or (3) the cloning of human embryos for any purpose.

Reaction of Pro-Life Groups. Reaction to the Bush Administration decision on human embryonic stem cell research from religious groups and pro-life groups was mixed. Prior to August 9, 2001, President Bush had indicated that he did not support the federal funding of research on stem cells derived from either human embryos or fetal tissue obtained from abortions. Some groups, such as the U.S. Conference of Catholic Bishops denounced President Bush’s decision as “morally unacceptable.” A spokesperson for the American Life League stated that President

12 The August 9, 2001, Remarks by the President on Stem Cell Research can be found at: [http://www.whitehouse.gov/news/releases/2001/08/20010809-2.html].

15 President Bush had indicated his support for stem cell research using cells derived from fetal tissue obtained from spontaneous abortions (miscarriages). However, scientists contend that such tissue is for the most part unsuitable for research due to the presence of genetic defects or other anomalies.

Bush “can no longer describe himself as pro-life.”

Others took a more moderate stance. A spokesperson for the National Right to Life Committee stated that the NRLC commends ‘President Bush’s decision to prevent the federal government from becoming involved in research and experimentation that would require the deliberate destruction of human embryos. In taking this position, the President has acted to save the lives that he could.’

Other pro-life groups that have reacted positively to the President’s decision include the Christian Legal Society, Focus on the Family, and the Christian Coalition.

Reaction of Scientific Community. Reaction to the Bush Administration decision from the scientific community was mixed as well. Many scientists were very concerned that federal funding for stem cell research could have been completely blocked, and therefore, they were relieved that the Bush decision allows some federal dollars to be used for the initial stages of basic research. However, there are some reservations about the future of research. Initially, much of the commentary from scientists focused on the number of stem cell lines available for federally funded research. While President Bush indicated in his speech that over 60 stem cell lines existed, a June 2001 NIH report on the status of stem cell research stated that about 30 cell lines had been derived from embryos or fetal tissue, another source of stem cells. Scientists questioned the President’s number because only a handful of embryonic stem cell lines had been described in scientific journals and meetings. They are also concerned about the quality, longevity, availability and terms of use of the stem cell lines.

On August 27, 2001, NIH released a statement identifying, at that time, the 10 universities and companies that had derived 64 embryonic stem cell lines eligible for use in federally funded research. (Subsequently, additional eligible stem cell lines were identified at other locations.) The NIH statement warns that in some cases, a cell line may need to be expanded in size in order to be widely distributed and in other cases, a cell line will require further study before it will be made available.

The next day, two such companies (CyThera and Reliance Life Sciences) stated in media reports that they are only in the initial stages of characterizing their stem cell lines and would not be ready to provide cells to researchers for many months. In Sweden, Goteburg University stated that of their 19 cell lines, only 3 are

20 The NIH statement can be found at: [http://www.nih.gov/news/stemcell/082701list.htm].

considered to be established. The Karolinska Institute, also in Sweden, indicated that its embryonic stem cell lines “are not ready for research and must be scientifically validated.” On September 5, 2001, Secretary Tommy Thompson testified at a Senate hearing that only 24 of the 64 stem cell lines are fully characterized and ready to be sent out to scientists. Secretary Thompson stated that there are more than enough stem cell lines available for NIH funded basic research and seemed to suggest that the private sector would be able to fund research on disease treatments if additional human embryonic stem cell lines were required.

The Goteburg scientists plan to establish many more stem cell lines; they estimate that over 100 lines will be required for their own research needs. Scientists believe that more cell lines will be needed for a variety of reasons, such as if genetic problems are identified or mutations develop in the stem cell lines, to ensure adequate genetic diversity, and, in the future, to provide sterile lines for potential cell-based therapy. The human embryonic stem cell lines that have been isolated to date have all been grown on beds of mouse “feeder” cells. The mouse cells secrete a substance that prevents the human embryonic stem cells from differentiating into more mature cell types (such as nerve or muscle cells).

Infectious agents, such as viruses, within the mouse feeder cells could transfer into the human cells. If the human cells were transplanted into a patient, these infected human cells may cause disease in the patient which could be transmitted to close contacts of the patient and eventually to the general population. Public health officials and regulatory agencies such as the FDA are specifically concerned about retroviruses, which may remain hidden in the DNA only to cause disease many years later, as well as any unrecognized agents which may be present in the mouse cells.

Xenotransplantation. The FDA defines xenotransplantation as “any procedure that involves the transplantation, implantation, or infusion into a human recipient of either (a) live cells, tissues, or organs from a nonhuman source, or (b) human body fluids, cells, tissues or organs that have had ex vivo contact with live nonhuman animal cells, tissues or organs.” Xenotransplantation products are subject to regulation by the FDA under section 351 of the Public Health Service Act (42 USC 262) and the Federal Food, Drug and Cosmetic Act (21 USC 321 et. seq.). FDA has developed guidance documents and the U.S. Public Health Service has

24 However in February 2001, Geron Corporation researchers presented findings at a scientific meeting demonstrating that human embryonic stem cells can be maintained without mouse feeder cells. From NIH report *Stem cells: scientific progress and future research directions,* June 2001, p. 95-96.

developed guidelines on infectious disease issues in xenotransplantation. During a Senate hearing on stem cell research held on September 5, 2001, Secretary Thompson stated that FDA is overseeing 17 INDs involving xenotransplantation in other areas of clinical research that involve patients. Therefore, the xenotransplantation-related public health concerns over the human embryonic stem cell lines may not necessarily preclude the development of treatments for patients.

While the problems presented by xenotransplantation for clinical research are not unique to stem cell research nor insurmountable, many scientists believe it will be necessary to develop sterile cell lines before researchers can attempt to treat patients suffering from conditions such as diabetes or Parkinson’s disease with stem cell transplantation. Some U.S. scientists have expressed the hope that eventually the President’s Council on Bioethics (see the following section) will consider reasonable arguments that will allow new stem cell lines to be created. However, HHS Secretary Tommy Thompson has stated in the media that “neither unexpected scientific breakthroughs nor unanticipated research problems would cause Bush to reconsider the strict limits on stem cell funding he set” on August 9, 2001. Secretary Thompson reiterated this position several times during a Senate hearing on stem cell research held on September 5, 2001. President Bush has stated that he would veto any legislation that alters the parameters outlined in his August 9, 2001 policy decision.

President’s Council on Bioethics. President Bush announced in his speech the creation of a new bioethics council, consisting of leading scientists, doctors, ethicists, lawyers, theologians, and others. The function of the President’s Council on Bioethics is to monitor stem cell research, recommend guidelines and regulations, and consider all of the medical and ethical ramifications of biomedical innovation. According to the White House, the council “will study such issues as embryo and stem cell research, assisted reproduction, cloning, genetic screening, gene therapy, euthanasia, psychoactive drugs, and brain implants.” The President’s Council on Bioethics, was established for a period of up to 2 years by Executive Order 13237 on November 28, 2001. The council is chaired by Dr. Leon Kass, a biomedical ethicist on the faculty of the University of Chicago. On January 16, 2002, the White House announced the other 17 members of the council.

The first meeting of the President’s Council on Bioethics was held on January 17-18, 2002, in Washington, D.C. Dr. Kass announced that the first topic to be addressed by the Council would be human cloning. At the Council’s second meeting

26 These documents are available at: [http://www.fda.gov/cber/xap/xap.htm].
30 Transcripts of the Council meetings and papers developed by staff for discussion during Council meetings can be found at [http://www.bioethics.gov].
on February 13-14, 2002, all Council members voted in opposition to reproductive cloning. However, they could not come to an agreement on articulating the precise nature of their objection, whether solely on safety grounds or which of the various moral objections were most important. On the issue of therapeutic cloning, what the Council prefers to call research cloning, the Council also could not come to agreement. Dr. Kass proposed that the Council’s final report should reflect both the arguments supporting cloning for the purpose of medical treatment and those against. He asserted that the report should also provide the soundest arguments for each position and indicate how many Council members supported each viewpoint.

The third meeting of the Council was held on April 25 and 26, 2002. The Council heard presentations on the scientific and therapeutic promise of embryonic stem cells from John Gearhart of Johns Hopkins University and the potential of adult stem cells from Catherine Verfaillie of the University of Minnesota. In an informal vote, almost half of the 18 members of the Council voiced their support for the therapeutic use of human cloning. The May 2002 meeting was cancelled.

At the June 20, 2002, meeting, nine Council members voted to support cloning for medical research purposes, without a moratorium, provided a regulatory mechanism was established. Because one member of the Council had not attended the meetings and was not voting, the vote seemed to be 9 to 8 in favor of research cloning. However, draft versions of the Council report sent to Council members on June 28, 2002, indicated that two of the group of nine members had changed their votes in favor of a moratorium. Both made it clear that they have no ethical problem with cloning for biomedical research, but felt that a moratorium would provide time for additional discussion. The changed vote took many Council members by surprise, and some on the Council believe that the moratorium option, as opposed to a ban, was thrown in at the last minute and did not receive adequate discussion. In addition, some on the Council believe that the widely reported final vote of 10 to 7 in favor of a moratorium does not accurately reflect the fact “that the majority of the council has no problem with the ethics of biomedical cloning.” The final report, Human Cloning and Human Dignity: An Ethical Inquiry, was released at the July 11, 2002, meeting of the Council.

Access to Stem Cell Lines. NIH is interested in obtaining access to all eligible stem cell lines for use in the NIH intramural research program as well as making the lines available to the wider research community. On September 5, 2001, Secretary Thompson announced at a Senate hearing that NIH had reached an agreement with the University of Wisconsin. A Memorandum of Understanding (MOU) was signed by NIH and the University on September 4, 2001. According to an NIH news release, the MOU allows the University of Wisconsin stem cell lines

32 Ibid., p. 324.
33 Ibid., p. 322.
34 The Memorandum of Understanding is available on the NIH website at: [http://www.nih.gov/news/stemcell/WicellMOU.pdf].
to be used by “non-profit institutions that receive grants from the NIH under the same
terms and conditions as those available to NIH scientists provided those institutions
enter into a separate written agreement.” 35 A number of other MOUs have been
announced recently for research use of stem cell lines that meet the Bush
Administration criteria: (1) April 5, 2002, ES Cell International Pte. Ltd., Melbourne,
Australia; (2) April 24, 2002, BresaGen Inc, Athens, GA; (3) April 26, 2002,
University of California, San Francisco. 36

Many individuals have expressed concerns over the patents that have been
filed or issued on stem cell lines because they fear a patent will limit access to a stem cell
line or may make any access agreement difficult to negotiate. Because the Bush
policy on federally funded embryonic stem cell research has limited research options
to a discrete number of cell lines (arguably a monopoly of the 14 laboratories or
companies on the NIH Stem Cell Registry, see next section), Congress and other
interested parties may pay close attention to how patents on exploitable stem cell
inventions are used by the patent holders. Licensing policies and practices are likely
to be closely watched. 37

NIH Stem Cell Registry. The National Institutes of Health (NIH) has
established the Human Embryonic Stem Cell Registry which lists 14 universities and
companies that have derived a total of 78 human embryonic stem cell lines which are
eligible for use in federally funded research. The registry is accessible to scientists
and the general public via the NIH website; it contains basic scientific information
about the cell lines as well as contact information. 38 An NIH website document dated
February 28, 2002, states that “in the past few weeks, NIH has approved the first
expenditures” for research on human embryonic stem cells. 39 The NIH website also
provides information on how scientists may apply to use existing funds or apply for
administrative supplements to existing grants to conduct such research. 40

35 National Institutes of Health and WiCell Research Institute, Inc., sign stem cell research
36 The Memorandum of Understanding documents are available on the NIH website at:
37 For further information, see CRS Report RL31142, Stem Cell Research and Patents: An
38 Information about the NIH Stem Cell Registry is available on the NIH website at:
[http://escr.nih.gov/].
39 “NIH Strategies for Implementing Human Embryonic Stem Cell Research, February 28,
40 “Implementation Issues for Human Embryonic Stem Cell Research– Frequently Asked
Table 1. Stem Cell Lines Eligible for use in Federal Research

<table>
<thead>
<tr>
<th>Name</th>
<th># of stem cell lines</th>
</tr>
</thead>
<tbody>
<tr>
<td>BresaGen, Inc., Athens GA</td>
<td>4</td>
</tr>
<tr>
<td>CyThera, Inc., San Diego, CA</td>
<td>9</td>
</tr>
<tr>
<td>ES Cell International, Melbourne, Australia</td>
<td>6</td>
</tr>
<tr>
<td>Geron Corporation, Menlo Park, California</td>
<td>7</td>
</tr>
<tr>
<td>Goteborg University, Goteborg, Sweden</td>
<td>19</td>
</tr>
<tr>
<td>Karoliska Institute, Stockholm, Sweden</td>
<td>6</td>
</tr>
<tr>
<td>Maria Biotech Co. Ltd.– Maria Infertility Hospital Medical Institute, Seoul, Korea</td>
<td>3</td>
</tr>
<tr>
<td>MizMedi Hospital– Seoul National University, Seoul, Korea</td>
<td>1</td>
</tr>
<tr>
<td>National Center for Biological Sciences/Tata Institute of Fundamental Research, Bangalore, India</td>
<td>3</td>
</tr>
<tr>
<td>Pochon CHA University, Seoul, Korea</td>
<td>2</td>
</tr>
<tr>
<td>Reliance Life Sciences, Mumbai, India</td>
<td>7</td>
</tr>
<tr>
<td>Technion University, Haifa, Israel</td>
<td>4</td>
</tr>
<tr>
<td>University of California, San Francisco, CA</td>
<td>2</td>
</tr>
<tr>
<td>Wisconsin Alumni Research Foundation, Madison, WI</td>
<td>5</td>
</tr>
</tbody>
</table>

Actions During the Clinton Administration

Dickey Amendment. Prior to the August 2001 Bush Administration decision, no federal funds had been used to support research on stem cells derived from either embryos or fetal tissue.\(^{41}\) The work at the University of Wisconsin and Johns Hopkins University was supported by private funding from Geron Corporation. Private funding for experiments involving embryos was required because Congress attached a rider to legislation that affected FY1996 NIH funding. The rider, an amendment originally introduced by Representative Jay Dickey, prohibited HHS from using appropriated funds for the creation of human embryos for research purposes or for research in which human embryos are destroyed. It has been added to the Labor, HHS and Education appropriations acts for FY1997 through FY2002.\(^{42}\) Current language, Section 510 of the FY2002 Labor, HHS and Education Appropriations Act, prohibits HHS from using FY2002 appropriated funds for:

\(^{41}\) However, federal funds have been provided for research on adult stem cells. In FY2000, the total amount spent by NIH on stem cell research was $256 million. The total can be broken down as follows: human adult stem cell research, $147 million; animal adult stem cell research, $79 million; animal embryonic stem cell research, $30 million.

(1) the creation of a human embryo or embryos for research purposes; or
(2) research in which a human embryo or embryos are destroyed, discarded, or knowingly
subjected to risk of injury or death greater than that allowed for research on fetuses in
utero under 45 CFR 46.208(a)(2) and Section 498(b) of the Public Health Service Act (42
U.S.C. 289g(b)). For purposes of this section, the term “human embryo or embryos”
includes any organism, not protected as a human subject under 45 CFR 46 [the Human
Subject Protection regulations] ... that is derived by fertilization, parthenogenesis, cloning,
or any other means from one or more human gametes [sperm or egg] or human diploid
cells [cells that have two sets of chromosomes, such as somatic cells].

There is no similar federal prohibition on fetal tissue research; however, other
restrictions do apply.

In January 1999 HHS determined that the ban on federal funding of human
embryo research did not prohibit funding human embryonic stem cell research. NIH
published guidelines for support of such research in August 2000. Some Members
of Congress expressed strong disagreement with the HHS decision and stated that
such research is banned by the Dickey amendment. NIH began accepting grant
applications for research projects utilizing human stem cells immediately following
publication of the guidelines. All applications were to be reviewed by the NIH
Human Pluripotent Stem Cell Review Group (HPSCRG), which was established to
ensure compliance with the guidelines. Applications would have also undergone the
normal NIH peer-review process.

In mid-April 2001, the Bush Administration postponed the first meeting of the
HPSCRG pending a review of Clinton Administration policy decisions on stem cell
research. According to media sources, only 3 grant applications were submitted to
NIH, and 1 was subsequently withdrawn. Presumably, scientists were reluctant to
invest the time and effort into preparing an NIH grant application when the prospects
of receiving federal funds were uncertain.

The Bush Administration’s August 9, 2001, policy statement on stem cell
research and the NIH Stem Cell Registry effectively replaces the NIH guidelines that
were developed under the Clinton Administration. As a result, grant proposals for
embryonic stem cell research will undergo only the normal peer-review process.
There will not be a review by the Human Pluripotent Stem Cell Review Group as had
been stipulated in the NIH Guidelines.

National Bioethics Advisory Committee Report. On November 14,
1998, following the announcement by the University of Wisconsin and Johns
Hopkins University on the derivation of human embryonic stem cells, President
Clinton asked National Bioethics Advisory Committee (NBAC) to conduct a review
of the issues associated with stem cell research. NBAC released its report entitled

43 Boahene, A. K. Stem cell research group cancels inaugural meeting pending HHS review
45 NBAC was established by Executive Order 12975 on October 3, 1995; a September 16,
1999 executive order extended the NBAC charter until October 2001. NBAC made
“Ethical Issues in Human Stem Cell Research” in January 2000.46 In its report, NBAC recommended that federal funding support research to derive and use stem cells from fetal tissue as well as embryos remaining after infertility treatment. However, NBAC recommended that federal agencies should not support research involving the derivation or use of stem cells from embryos made for research purposes or from embryos made using SCNT.

National Academies Reports on Stem Cells and Human Cloning

On September 11, 2001, the National Academies released a report entitled *Stem Cells and the Future of Regenerative Medicine.*47 The report recommends that research on both adult and human embryonic stem be pursued. Due to concerns over changing genetic and biological properties of existing stem cell lines, the report indicates that in the future the development of new stem cell lines will be necessary. The report recommends continued federal funding for both adult and human embryonic stem cell research. The report argues that because publicly funded research would be conducted with peer review, open scientific exchange and public oversight, the promise of stem cell research in developing medical therapies is more likely to be fulfilled in an efficient and responsible manner. Lastly, the report recommends that research on approaches that prevent immune rejection of stem cells and stem cell-derived tissues, including SCNT, be actively pursued.

On January 18, 2002, the National Academies released its report entitled *Scientific and Medical Aspects of Human Reproductive Cloning.*48 The panel recommends that the U.S. ban human reproductive cloning that is aimed at creating a child. Based on the results of animal cloning experiments, the panel is concerned for the safety of both the woman and the fetus and judged the procedure to be too dangerous for use in humans at the present time. It recommends that the ban should be legally enforceable and carry substantial penalties rather than be based on voluntary actions. It should be reconsidered within 5 years, but only if compelling new data on safety and efficacy are presented and a national dialogue on the social

45(...continued)

recommendations to the National Science and Technology Council on bioethical issues arising from research on human biology and behavior. NBAC also completed reports on human cloning, the use of human biological materials, and treating persons with mental disorders. NBAC has been replaced by the President’s Council on Bioethics, which was described by the Bush Administration in its August 9, 2001, policy statement on human embryonic stem cell research. The President’s remarks on embryonic stem cell research are available at: [http://www.whitehouse.gov/news/releases/2001/08/20010809-2.html].

46 The NBAC report is available at: [http://bioethics.georgetown.edu/nbac/].

47 The National Academies are the National Academy of Sciences, the National Academy of Engineering, the Institute of Medicine, and the National Research Council. The National Academies’ report on stem cell research is available at: [http://www.nap.edu/catalog/10195.html?onpi_topnews_091101].

48 The National Academies’ report on human cloning is available at: [http://www.nap.edu/catalog/10285.html?onpi_topnews_011802].
and ethical issues suggests that a review is warranted. However, the panel concluded that research using SCNT to produce stem cells should be permitted because of the considerable potential for developing new therapies and advancing biomedical knowledge. This position is in agreement with the previous National Academies report on stem cells.

Congressional Actions

Stem Cell Legislation. S. 723 (Specter), introduced on April 5, 2001, would give NIH authority to fund the derivation of stem cells from surplus IVF embryos, an activity prohibited by the appropriation bill rider. In contrast, the bill broadly prohibits support of embryo research unrelated to stem cells. By amending the Public Health Service Act, this provision represents a more permanent legislative prohibition than the ban on embryo research contained in the appropriations rider, also referred to as the Dickey amendment, which must be renewed each year. A companion bill, H.R. 2059 (McDermott) was introduced in the House on June 5, 2001. On January 30, 2001, H.Res. 17 (Maloney) was introduced “expressing the sense of the Congress supporting federal funding of pluripotent stem cell research.”

The Responsible Stem Cell Research Act of 2001, H.R. 2096 (Smith), introduced on June 7, 2001, authorizes the Secretary of HHS to establish a National Stem Cell Donor Bank in order to make “qualifying human stem cells” available for research and therapeutic purposes. Qualifying human stem cells are defined in the bill as “human stem cells obtained from human placentas, umbilical cord blood, organs or tissues of a living or deceased human being who has been born, or organs or tissues of unborn human offspring who died of natural causes (such as spontaneous abortion).” A companion bill, S. 1349 (Ensign), was introduced on August 3, 2001. H.R. 2096 authorizes appropriations of $30 million for FY2002, S. 1349 authorizes appropriations of $275 million, and both authorize such sums as may be necessary for FY2003 through FY2006.

The Stem Cell Research for Patient Benefit Act, H.R. 2747 (DeGette), introduced on August 2, 2001, would require NIH to support research on human embryonic stem cells derived from embryos or fetal tissue in accordance with the NIH guidelines published in August 2000. H.R. 2747 requires that NIH conduct a study on the properties of stem cells derived from various sources and report on the effectiveness of implementing the NIH guidelines. The bill requests that the Institute of Medicine conduct a study comparing therapies, involving somatic cell nuclear transfer and drug therapies, that may be used to address immune system rejection of stem cells. Lastly, the bill would establish a Biomedical Advisory Commission, members appointed by Congress and the President, which would conduct studies on ethical issues arising from biomedical research and its clinical applications.

The New Century Health Advantage Act, H.R. 2838 (Millender-McDonald), introduced on September 5, 2001, would repeal the prohibition on using federal funds for embryo research, also known as the Dickey amendment, and direct the NIH to support research on human stem cells that were derived from embryos that were created for fertility treatments and were in excess of clinical need.
The Science of Stem Cell Research Act, H.R. 4011 (Maloney), introduced on April 2, 2002, would establish for four years the Stem Cell Research Board, a bipartisan legislative branch commission. The Board would be required to research: (1) the effects of the President’s August 9, 2001, stem cell research directive, including progress in advancing disease cures and improving organ transplantation; and (2) the effect of limiting Federal funding on the private stem cell research sector and the funding process of the NIH for human adult and embryonic stem cell research.

Cloning Legislation. On July 19, 2001, the House Judiciary Subcommittee on Crime approved H.R. 2505 (Weldon) by voice vote. H.R. 2505 would ban the process of human cloning, called somatic cell nuclear transfer (SCNT), when it is used for reproductive purposes as well as for research and therapeutic uses, which would involve stem cells. The bill’s language specifically bans the importation of any product derived from an embryo created via SCNT, and therefore would presumably prevent U.S. citizens from receiving treatments for diabetes, cancer, or Parkinson’s disease that were created overseas. The bill includes a criminal penalty of imprisonment of not more than 10 years and a civil penalty of not less than $1 million and not more than 2 times the gross gain of the violator.

On July 24, 2001, the House Judiciary Committee approved H.R. 2505 by a vote of 18 to 11 and defeated a substitute measure by a vote of 11 to 19. The substitute was identical to H.R. 2608 (Greenwood), which would ban only human reproductive cloning; the ban would sunset after 10 years. H.R. 2608 has the same criminal and civil penalties as H.R. 2505 when cloning is used “with the intent to initiate a pregnancy.” The Bush Administration announced its support for H.R. 2505 on July 24, 2001.

On July 31, 2001, the House passed H.R. 2505 by a vote of 265-162. Prior to the vote on H.R. 2505, the House defeated a substitute amendment, H. Amdt. 285, which is identical to H.R. 2608, by a vote of 178 to 249. During debate, supporters of H.R. 2505 argued that a partial ban on human cloning, such as H.R. 2608, would be impossible to enforce. Critics of H.R. 2505 argued that SCNT creates a “clump of cells” rather than an embryo, and that the measure would curtail medical research and prevent Americans from receiving life-saving treatments created overseas.

On December 3, 2001, the Senate considered an amendment proposed by Senator Lott that would have imposed a 6-month moratorium on all human cloning research; an attempt to attach the amendment to a bill (H.R. 10) on pension contribution limits failed (Senate Roll Call vote 344).

S. 1899 (Brownback), the Human Cloning Prohibition Act of 2001 was introduced on January 28, 2002; it is the companion bill to H.R. 2505. S.1899 currently has 30 cosponsors and is very similar to S. 790, a bill introduced by Senator Brownback in April 2001. At a White House press briefing on April 10, 2002, President Bush again stated his support for a prohibition on all forms of human cloning and endorsed Senator Brownback’s bill.

On the same day as the White House briefing, the American Society for Cell Biology released a statement, signed by 40 Nobel Laureates, in favor of nuclear
transplantation technology for research and therapeutic purposes and in opposition to the Brownback bill.49 The statement asserts that S. 1899 “would impede progress against some of the most debilitating diseases known to man.”

Former President Gerald Ford stated his strong opposition to both H.R. 2505 and S. 1899 in a April 25, 2002, letter to President Bush.50 In the letter, Ford indicates that during his administration, the controversy over recombinant DNA research was “successfully addressed with ‘careful thought’ and the implementation of safety regulations.”51 Former President Ford “expresses full support for therapeutic cloning, arguing a prohibition of this technology ‘would adversely impact scientific research and should not become law.’”52

Senators Arlen Specter, Dianne Feinstein, Orrin Hatch and Edward Kennedy introduced S. 2439 (Specter), the Human Cloning Prohibition Act of 2002, on April 30, 2002. S. 2439 would prohibit human reproductive cloning while allowing cloning for medical research purposes, including stem cell research. According to a press release from Sen. Specter’s office, S. 2439 applies Federal ethical regulations on human subject research to nuclear transplantation research, such as review by an ethics board, inclusion of protections for research participants, privacy and informed consent. It would also impose a $250,000 fine for a violation of these conditions. S. 2439 would impose penalties for violations of the reproductive cloning ban of up to 10 years in prison and a minimum fine of $1 million. The bill defines human cloning as “implanting or attempting to implant the product of nuclear transplantation into a uterus or functional equivalent of a uterus.”53

Some legal scholars believe a ban on human cloning may be unconstitutional because it would infringe upon the right to make reproductive decisions which is “protected under the constitutional right to privacy and the constitutional right to liberty.”54 Other scholars do not believe that noncoital, asexual reproduction, such as cloning, would be considered a fundamental right by the Supreme Court. A ban on human cloning research may raise other constitutional issues: scientists’ right to personal liberty and free speech. In the opinion of some legal scholars, any government limits on the use of cloning in scientific inquiry or human reproduction would have to be “narrowly tailored to further a compelling state interest.”55

49 The American Society for Cell Biology statement by the 40 Nobel Laureates is available at: [http://www.ascb.org/publicpolicy/Nobelletter.html].

51 Ibid.

52 Ibid.

55 Ibid., p. 667.
Ethical Issues

The central controversy surrounding human stem cell research is the source of the cells. The debate primarily arises from differences in deeply held religious and philosophic views. For most who believe that the embryo is a human being from the moment of fertilization, the derivation of stem cells from either very early or pre-implantation embryos created by IVF or from the tissues of aborted fetuses is ethically unacceptable. From this viewpoint, even though the Bush Administration August 9 policy decision on stem cell research does not support activities which directly destroy embryos, support of research on components of the embryo is deeply disturbing.

Supporters of this view argue that the possible benefits of stem cell research cannot and should not justify the actions necessary to obtain the cells. Opponents of stem cell research propose that research on adult stem cells, which they claim could provide similar therapeutic benefits without the need for embryonic or fetal cells, be supported instead. Not all scientists agree, however, that adult stem cells hold as much potential as embryonic stem cells.

Those who support embryonic stem cell research believe that pre-implantation embryos do not have the same moral and legal status as persons. They acknowledge that embryos are genetically human, but hold that they do not have the same moral relevance because they lack specific capacities, including consciousness, reasoning and sentience. The NBAC received testimony from witnesses of many religious traditions that were open to the use of early embryos (remaining from infertility treatments) for stem cell research as well as many who were opposed. “Jewish and Islamic ethicists supported stem cell research while Protestant and Catholics were mixed. ... [W]hile the early human embryo is worthy of respect, it ought not to be given personal moral status until there has been sufficient development of the embryo.”

Supporters argue that the potential human health and scientific benefits the research holds should be an ethical argument for its support. Patient groups have also asserted that, because of the potential of human stem cells for the treatment of disease, it is immoral to discourage such research because it could save many lives. In addition, supporters believe that the oversight which would come with federal grant support would result in better and more ethically controlled research in the field than if funding was from private sources alone. Supporters also argue that the efforts of both federally supported and privately supported researchers are necessary to keep the United States at the forefront of what they believe is a very important, cutting edge area of science.
