NASA: Issues for Authorization, Appropriations, and Oversight in the 113th Congress

Daniel Morgan
Specialist in Science and Technology Policy

July 11, 2013
Summary

Spaceflight fascinates and inspires many Americans, but in a time of constrained federal budgets, it must compete with a multitude of other national priorities. As the 113th Congress conducts oversight and considers authorization and appropriations legislation for the National Aeronautics and Space Administration (NASA), an overarching question is how NASA should move forward within budget constraints.

The National Aeronautics and Space Administration Authorization Act of 2010 (P.L. 111-267) set a new direction for NASA’s human spaceflight programs. For access to low Earth orbit, including the International Space Station (ISS), it confirmed NASA’s plans to develop a commercial space transportation capability for both cargo and astronauts. The first commercial cargo flight for ISS resupply was conducted in May 2012. Pending the planned availability of commercial crew transportation in 2017, NASA is paying Russia to carry U.S. astronauts to and from the ISS on Soyuz spacecraft. Issues for Congress include the cost, schedule, and safety of future commercial crew services, as well as the need for alternatives if commercial providers do not succeed.

For human exploration beyond Earth orbit, the 2010 NASA authorization act mandated development of the Orion Multipurpose Crew Vehicle and the Space Launch System (SLS) rocket to launch Orion into space. The first test flight of Orion and the SLS, without a crew, is planned for 2017. The first test flight with a crew is planned for 2021. Issues include the feasibility of accelerating that schedule, the payload mass capability of the SLS in the near and long term, and how Orion and the SLS should be used when operational. NASA plans to send humans to an asteroid by 2025 and to Mars in the 2030s, but some in Congress would prefer to focus on returning humans to the Moon. Orion and the SLS could also be used as a backup option for access to the ISS, but that option raises additional questions about cost and schedule.

U.S. use of the ISS is currently authorized through FY2020. In addition to crew access concerns, Congress is likely to examine the utilization of the ISS for research, both through traditional NASA mechanisms and via the independently managed ISS national laboratory process. Some in Congress may also be interested in further extending the life of the ISS beyond FY2020.

Many in Congress are concerned that the needs of the human spaceflight program may reduce the resources available for NASA’s other activities, including science, aeronautics research, and education programs. Funding for Earth science satellites is particularly contentious, because of their use for climate change research. Proposed cuts in funding for planetary science, following the launch of the Mars Science Laboratory and the anticipated launch in November 2013 of the MAVEN Mars mission, have encountered opposition in both Congress and the scientific community. The explosion of a small asteroid over Chelyabinsk, Russia, in February 2013 may have increased congressional interest in the science and potential threat of near-Earth asteroids and comets. The Administration has proposed a government-wide reorganization of science, technology, engineering, and mathematics (STEM) education programs. NASA programs, including all education programs currently funded by the Science Mission Directorate, account for nearly half of the planned terminations under this proposal.

The Administration’s budget request for FY2014 includes $17.715 billion for NASA, compared with $17.492 billion in FY2013 (before sequestration) and $17.770 billion in FY2012.
Contents

Introduction .. 1
NASA Organization and Programs .. 1
Authorization Context .. 2
Budget and Appropriations Context .. 4
Human Spaceflight .. 9
 International Space Station .. 9
 Use of the ISS for Research .. 10
 ISS National Laboratory .. 12
 ISS Service Life Extension ... 13
 Crew and Cargo Access to the ISS .. 13
Commercial Crew ... 14
 Competition and Commercial Demand .. 15
 Use of Space Act Agreements ... 16
 Safety of Commercial Human Spaceflight ... 17
Multipurpose Crew Vehicle and Space Launch System .. 18
 Orion/SLS Schedule .. 18
 SLS Payload Mass .. 20
 Orion/SLS as Backup Option for ISS Access .. 20
 Destinations for Human Exploration Beyond Earth Orbit ... 21
FY2014 Budget and Appropriations .. 23
Science ... 24
 NRC Decadal Surveys ... 24
 Earth Science ... 25
 Mars Exploration .. 26
 Near-Earth Objects .. 26
 James Webb Space Telescope .. 27
 FY2014 Budget and Appropriations ... 28
Space Technology .. 29
 Strategic Planning .. 29
 FY2014 Budget and Appropriations ... 31
Aeronautics .. 31
 FY2014 Budget and Appropriations ... 31
Education ... 32
 Reorganization Proposal .. 32
 FY2014 Budget and Appropriations ... 33
Conclusion ... 33

Figures

Figure 1. NASA Funding, FY1958-FY2014 ... 6
Figure 2. NASA Funding as a Percentage of GDP, FY1958-FY2014 ... 7
Figure 3. Actual, Authorized, Requested, and Projected NASA Funding, FY2006-FY2018 8
Tables
Table 1. NASA Funding, FY2012-FY2014 ... 5
Table 2. NASA Human Spaceflight Funding, FY2012-FY2014 23
Table 3. NASA Science Funding, FY2012-FY2014 .. 28
Table 4. NASA Space Technology Funding, FY2012-FY2014 31
Table 5. NASA Aeronautics Funding, FY2012-FY2014 .. 32
Table 6. NASA Education Funding, FY2012-FY2014 ... 33

Contacts
Author Contact Information ... 34
Introduction

Spaceflight fascinates and inspires many Americans, but in a time of constrained federal budgets, it must compete with a multitude of other national priorities. As the 113th Congress conducts oversight and considers authorization and appropriations legislation for the National Aeronautics and Space Administration (NASA), an overarching question is how NASA should move forward within budget constraints. This report discusses a number of issues that arise within the framework of that question. Among these are the following.

- Can commercial services transport U.S. astronauts into Earth orbit, including to the International Space Station, cost-effectively and safely?
- For human spaceflight beyond Earth orbit, will the spacecraft now in development be ready on schedule, and how should they be used when operational?
- How will the needs of the human spaceflight program affect resources for NASA’s science missions, aeronautics research, and education programs?
- What is the appropriate level of NASA support for Earth science, planetary science, and other scientific fields?
- In general, is NASA being asked to do more than it can afford?

Major NASA policy developments since the start of the current Administration include

- in October 2009, the influential Augustine report on the future of U.S. human spaceflight;
- early in 2010, the Obama Administration’s announcement of a plan to cancel the Bush Administration’s Vision for Space Exploration and rely on commercial services for crew access to Earth orbit;
- the final flight of the space shuttle in July 2011; and
- beginning in FY2011, annual reductions in NASA’s budget as a result of government-wide fiscal constraints.

This report begins with some context: a brief survey of NASA’s organization and programs, a summary of recent NASA authorization legislation, and an overview of NASA’s budget. Subsequent sections address policy topics in each of the major NASA mission areas.

NASA Organization and Programs

NASA was created by the National Aeronautics and Space Act of 1958 (P.L. 85-568) to conduct civilian space and aeronautics activities. Its FY2013 budget (before sequestration) is $17.5
NASA employs approximately 17,700 civil servants (full-time equivalents). It is led by Administrator Charles F. Bolden, Jr.2

NASA has four mission directorates. The Human Exploration and Operations Mission Directorate is responsible for human spaceflight activities, including the International Space Station and development efforts for future crewed spacecraft. The Science Mission Directorate manages robotic science missions, such as the Hubble Space Telescope, the Mars rover Curiosity, and satellites for Earth science research. The Space Technology Mission Directorate develops new technologies for use in future space missions, such as advanced propulsion and laser communications. The Aeronautics Research Mission Directorate conducts research and development on aircraft and aviation systems. In addition to the mission directorates, the Office of Education manages formal and informal education programs for school children, college and university students, and the general public.3

Most of the activities that make up these programs are managed and conducted by a system of field centers. The nine NASA field centers are Ames Research Center at Moffett Field, CA; Dryden Flight Research Center in Edwards, CA; Glenn Research Center in Cleveland, OH; Goddard Space Flight Center in Greenbelt, MD; Johnson Space Center in Houston, TX; Kennedy Space Center in Cape Canaveral, FL; Langley Research Center in Hampton, VA; Marshall Space Flight Center in Huntsville, AL; and Stennis Space Center near Slidell, MS. The Jet Propulsion Laboratory in Pasadena, CA, which is sometimes considered a tenth field center, is operated for NASA by the California Institute of Technology. Goddard Space Flight Center manages the Goddard Institute for Space Studies in New York, NY; the Independent Validation and Verification Facility in Fairmont, WV; and the Wallops Flight Facility in Wallops Island, VA. Marshall Space Flight Center manages the Michoud Assembly Facility in New Orleans, LA. The NASA Shared Services Center is on the grounds of Stennis Space Center.4

Authorization Context

For most of the three decades after NASA’s establishment in 1958, Congress passed a NASA authorization act nearly every year. Starting in the 1990s, these acts became less frequent. In the past decade, Congress has enacted three NASA authorization acts: the National Aeronautics and Space Administration Authorization Acts of 2005 (P.L. 109-155), 2008 (P.L. 110-422), and 2010 (P.L. 111-267).

The 2010 act set a new direction for NASA’s human spaceflight programs. It confirmed the already planned termination of the space shuttle program, which had provided access to space for U.S. astronauts since 1981.5 In place of the space shuttle, the act established two new programs for human spaceflight. First, for access to low Earth orbit, including the International Space Station (ISS), it confirmed NASA’s plans to develop a commercial space transportation capability

2 For a brief biography, see http://www.nasa.gov/about/highlights/bolden_bio.html. Biographies of other senior NASA officials are available through links at http://www.nasa.gov/about/org_index.html.
3 For links to the websites of these organizations and other NASA offices, see http://www.nasa.gov/about/org_index.html.
4 For links to the websites of these centers and other facilities, see http://www.nasa.gov/about/org_index.html.
5 P.L. 111-267, Title VI.
for both cargo and astronauts. Second, for human exploration beyond Earth orbit, the act mandated the development of a crew capsule, to be known as the Multipurpose Crew Vehicle (MPCV), and a heavy-lift rocket to launch the capsule, to be known as the Space Launch System (SLS). The act directed that the MPCV and SLS should serve as backup systems for cargo and crew access to the ISS, in the absence of a successful commercial capability. It also supported “full and complete utilization” of the ISS through at least 2020 and gave direction to NASA regarding ISS utilization and management.

In making these changes, the 2010 act assented to the Administration’s cancellation of the Constellation program. The purpose of Constellation had been to implement the Vision for Space Exploration, a policy announced by President Bush in January 2004 as a new direction for NASA following the February 2003 Columbia space shuttle disaster. Under the Vision, NASA was to focus its efforts on returning humans to the Moon by 2020 and eventually sending humans to Mars and “worlds beyond.” The main elements of the Vision were as follows:

- Return the space shuttle to flight status following the Columbia disaster, but then retire the space shuttle in 2010 (later changed to 2011). After the retirement of the space shuttle, use Russian Soyuz spacecraft for human access to space while developing a replacement vehicle.
- Complete construction of the ISS in accord with existing international commitments, but then terminate U.S. use of the ISS at the end of 2015.
- Under the Constellation program, develop new systems for human space exploration: the Ares I rocket to launch astronauts into low Earth orbit; the Orion crew capsule, to be launched atop Ares I, to carry astronauts into orbit and beyond; the Ares V heavy-lift rocket to send astronauts and equipment to the Moon; the Altair lunar lander; and various lunar surface systems.

Although Congress endorsed the broad goals of the Vision in the 2005 and 2008 NASA authorization acts, concerns grew about its cost and schedule. In 2009, NASA and the Office of Science and Technology Policy chartered a committee chaired by Norman R. Augustine to reexamine NASA’s human spaceflight goals. The report of the Augustine committee found that

- developing Ares I, Orion, and the other Constellation systems was likely to take longer than NASA anticipated;
- without substantial increases in NASA funding, human exploration could not continue “in any meaningful way”;

6 P.L. 111-267, Title IV.
7 P.L. 111-267, Title III.
8 P.L. 111-267, Sec. 302(c)(1)(D) and Sec. 303(b)(3).
9 P.L. 111-267, Title V.
11 The Office of Science and Technology Policy is part of the Executive Office of the President. See CRS Report RL34736, The President’s Office of Science and Technology Policy (OSTP): Issues for Congress, by John F. Sargent Jr. and Dana A. Shea.
not extending U.S. use of the ISS past 2015 would “significantly impair U.S. ability to develop and lead future international spaceflight partnerships”; and

- commercial services to launch crews into Earth orbit were “within reach.”

The report also examined alternatives to the spacecraft being developed under Constellation and considered several alternatives to the Moon as the first destination for future human exploration beyond Earth orbit.\(^\text{12}\)

In February 2010, the Administration’s budget for FY2011 proposed a number of changes for NASA, some of them based on the Augustine report. The proposals were controversial in Congress and led to an extensive debate about whether to retain Constellation and the Vision or, if not, what alternative approach to take. The 2010 NASA authorization act was the result of this debate, but some advocates of other approaches remained unsatisfied.

In addition to human spaceflight, the 2010 act addressed NASA’s programs in science, aeronautics, space technology, and education, as well as cross-cutting institutional and management issues. It also authorized NASA appropriations for FY2011 through FY2013.\(^\text{13}\)

Because the provisions authorizing appropriations did not extend past FY2013, the 113\(^\text{th}\) Congress has begun to consider new authorization legislation. On July 10, 2013, the House Committee on Science, Space, and Technology, Subcommittee on Space, marked up a draft of the National Aeronautics and Space Administration Authorization Act of 2013. An alternative bill with the same title (H.R. 2616) was introduced by the subcommittee’s ranking member on July 8, 2013.

Budget and Appropriations Context

Funding for NASA is provided in the annual Commerce-Justice-Science appropriations act. For FY2013, this was Division B of the Consolidated and Further Continuing Appropriations Act, 2013 (P.L. 113-6), which provided $17.492 billion for NASA.\(^\text{14}\) For further information about FY2014 appropriations legislation, see CRS Report R43080, *Commerce, Justice, Science, and Related Agencies: FY2014 Appropriations*.

Congressional budget justifications provide detailed information about the Administration’s annual budget proposals for NASA and how the requested funding would be used.\(^\text{15}\) The Administration’s FY2014 budget requested a total of $17.715 billion for NASA.

Table 1 summarizes recent NASA funding and how it is allocated among the agency’s nine appropriations accounts. More detailed figures for particular programs are provided later in this report.

13 P.L. 111-267, Title I.

14 After the rescissions required by Sec. 3001 and Sec. 3004 of the act, but before subsequent sequestration.

Table 1. NASA Funding, FY2012-FY2014
(budget authority in millions of dollars)

<table>
<thead>
<tr>
<th></th>
<th>FY2012 Actual</th>
<th>FY2013 Enacted</th>
<th>FY2014 Request</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science</td>
<td>$5,073.7</td>
<td>$5,037.4</td>
<td>$5,017.8</td>
</tr>
<tr>
<td>Aeronautics</td>
<td>569.4</td>
<td>558.2</td>
<td>565.7</td>
</tr>
<tr>
<td>Space Technology</td>
<td>573.7</td>
<td>628.7</td>
<td>742.6</td>
</tr>
<tr>
<td>Exploration</td>
<td>3,707.3</td>
<td>3,806.4</td>
<td>3,915.5</td>
</tr>
<tr>
<td>Space Operations</td>
<td>4,184.0</td>
<td>3,871.0</td>
<td>3,882.9</td>
</tr>
<tr>
<td>Education</td>
<td>136.1</td>
<td>122.4</td>
<td>94.2</td>
</tr>
<tr>
<td>Cross-Agency Support</td>
<td>2,993.9</td>
<td>2,764.5</td>
<td>2,850.3</td>
</tr>
<tr>
<td>Construction and Environmental Compliance and Remediation</td>
<td>494.5</td>
<td>665.9</td>
<td>609.4</td>
</tr>
<tr>
<td>Inspector General</td>
<td>38.3</td>
<td>37.2</td>
<td>37.0</td>
</tr>
<tr>
<td>Total NASA</td>
<td>17,770.0</td>
<td>17,491.7</td>
<td>17,715.4</td>
</tr>
</tbody>
</table>

Sources: FY2012 actual and FY2014 request from NASA’s FY2014 congressional budget justification. FY2013 enacted from P.L. 113-6 and explanatory statement, Congressional Record, March 11, 2013, pp. S1308-S1310. FY2013 enacted amounts are adjusted for the rescissions in P.L. 113-6, Sec. 3001 and Sec. 3004, but not for subsequent sequestration or reprogramming.

In arguing for additional NASA funding, advocates often compare current funding levels with historical trends. Figure 1 shows NASA funding in current dollars and inflation-adjusted FY2014 dollars from the agency’s establishment in 1958 to the Administration’s FY2014 request. The large peak in the 1960s is the Apollo program. The narrow peak in FY1987 is the construction of a replacement space shuttle after the Challenger disaster in January 1986. In inflation-adjusted terms, NASA funding has been fairly steady for most of the past 20 years, but the FY2013 appropriation and the President’s request for FY2014 are both lower than any other year since FY1988.
Another historical trend often cited by NASA advocates is the ratio of NASA funding to U.S. gross domestic product (GDP). This is shown in Figure 2. The Apollo and post-Challenger peaks are again evident. In these terms, the past 20 years have been a steady decline, except for a brief plateau in the early 2000s and an uptick in FY2009. As a share of GDP, the FY2013 NASA appropriation and the FY2014 Administration request are both lower than any other year since FY1960.

While advocates of more funding for NASA generally consider these trends persuasive, others may not. One counterargument is that federal funding should be allocated based on the merit and importance of current programs, without regard to the funding those programs have received in the past. Another is that federal programs in general should represent a lower share of GDP, in order to address the federal deficit and debt or to reduce the tax burden on the economy.

16 Most of the increase in FY2009 resulted from supplemental funding appropriated in the American Recovery and Reinvestment Act of 2009 (P.L. 111-5), commonly known as the stimulus bill.
Analysts also often compare actual appropriations for NASA with the amounts authorized in NASA authorization acts, the amounts requested by current and former Administrations, the amounts projected for future years by the Office of Management and Budget (OMB), and the “notional” amounts given for future years in NASA’s congressional budget justifications.17 As shown in Figure 3, actual appropriations rarely match the amounts authorized and may not even trend in the same direction. The authorized increase from FY2007 to FY2009 corresponded to an actual increase, but the authorized increase from FY2011 to FY2013 corresponded to an actual decrease.

17 An administrative provision in the Consolidated Appropriations Act, 2008 (P.L. 110-161) requires NASA to include estimated budgets for the next five years in its annual congressional budget justifications (51 U.S.C. 30103(c)). Since the FY2012 budget request, NASA has labeled these amounts as “notional.” NASA’s notional estimates project flat future-year funding for each NASA appropriations account (and hence for the agency as a whole). In contrast, OMB’s projections (which are provided only for the agency total) are different for each future year. According to NASA, the OMB projections are “mechanically calculated” to meet statutory budget caps, but for NASA’s congressional budget justifications, “NASA and the Administration agreed that it was much more prudent to plan to out-year flat amounts” and make adjustments in future budget cycles (NASA Office of Legislative and Intergovernmental Affairs, e-mail to CRS, June 3, 2013).
A frequent concern is that NASA is being asked to do more than it can afford. This concern is not new. For example, when the Bush Administration announced the Vision for Space Exploration in 2004, it proposed little new funding to implement it. A widely discussed “sand chart” showed modest funding increases in FY2005 and FY2006, but otherwise projected a NASA budget out to FY2020 that increased only at about the rate of inflation. Because of the Vision’s strong emphasis on human spaceflight, supporters of other NASA programs, especially science and aeronautics, feared that the Vision’s funding needs would put the rest of the agency under great budget pressure. In early 2006, a former NASA Associate Administrator for Space Science testified:

Two years ago, the President released his Vision for Space Exploration and provided a budget that would support it. In the intervening two years, the Administration has reduced this budget to the point where the plan is insupportable. Last year, aeronautics and technology suffered. This year, the Agency’s science program is to be cannibalized, even
though the NASA Administrator had promised not to transfer “one thin dime” from scientific exploration into human space flight.¹⁸

By 2009, the Augustine report concluded that executing NASA’s plans would require an additional $3 billion per year, even with some schedule delays.¹⁹

The Augustine report’s conclusions were a major impetus behind the passage of the 2010 NASA authorization act, but despite the changes in direction made by that act, concerns remain. Actual appropriations have fallen short of the authorized amounts without any major tasks being taken off NASA’s agenda. In September 2012, the chairman of the NASA Advisory Council testified:

As I look at NASA’s response to the Authorization Act of 2010, I cannot escape the conclusion that the agency is being asked to do too much with too little. The act provides the agency with a clear set of goals and priorities. The Administration has provided another set of goals and priorities. These two sets of guidance are not dramatically dissimilar, but taken together they call for more than the agency can do with the budget it has.²⁰

Human Spaceflight

Shortly after NASA was established in 1958, its Mercury program launched U.S. astronauts into suborbital space (1961) and then Earth orbit (1962). Between 1969 and 1972, the Apollo program landed 12 U.S. astronauts on the Moon. After the final Apollo mission, the United States did not launch humans into space again until the first flight of the space shuttle in 1981. Following the Columbia space shuttle disaster in 2003, NASA limited use of the space shuttle to the flights necessary for construction of the International Space Station (ISS).²¹ The last space shuttle flight was completed in July 2011. At present, NASA relies on Russian Soyuz spacecraft for astronaut access to the ISS, and NASA’s human spaceflight activities are focused on ISS operations and research, the development of a U.S. commercial capability to launch crews into Earth orbit, and the development of future spacecraft for human exploration beyond Earth orbit.

International Space Station

The ISS is composed of crew living space, laboratories, remote manipulator systems, solar arrays to generate electricity, and other elements. Launched separately, these elements were assembled in space. Rotating crews have occupied the ISS, each for a period of four to six months, since November 2000.²²

The framework for international cooperation on the ISS is the Intergovernmental Agreement on Space Station Cooperation, which was signed in 1998 by representatives of the United States,

¹⁸ Wesley T. Huntress, Jr., Director, Geophysical Laboratory, Carnegie Institution of Washington, testimony before the House Committee on Science, March 2, 2006.
²⁰ Steven W. Squyres, Goldwin Smith Professor of Astronomy, Cornell University, testimony before the Senate Committee on Commerce, Science, and Transportation, September 12, 2012.
²¹ The sole exception was a mission in 2009 to service the Hubble Space Telescope.
Russia, Japan, Canada, Belgium, Denmark, France, Germany, Italy, the Netherlands, Norway, Spain, Sweden, Switzerland, and the United Kingdom. The intergovernmental agreement has the status of an executive agreement in the United States, but is considered a treaty in all the other partner countries. It is implemented through memoranda of understanding between NASA and its counterpart agencies: the Russian Federal Space Agency (Roskosmos), the Japanese Aerospace Exploration Agency (JAXA), the Canadian Space Agency (CSA), and the European Space Agency (ESA). The United States also has an ISS participation agreement with Brazil, independent of the 1998 framework.

Issues of congressional interest include the full utilization of the ISS for research, the nature of that research, the management of the ISS as a national laboratory by other federal agencies and the private sector, the extension of ISS operations to 2020 and beyond, and access to the ISS for crews and cargo.

Use of the ISS for Research

During more than two decades of ISS design and construction, cost growth and schedule delays resulted in the repeated downsizing of the project’s scope and capabilities. These changes raised concern in Congress that the space station’s function as a research laboratory was being eroded. One issue of interest to Congress is whether the research capacity of the ISS is being fully utilized. Another is how research associated directly with human spaceflight should be prioritized on the ISS, compared with research in other fields of science.

In 2009, the Government Accountability Office identified several factors that might limit research use of the ISS: limited cargo capacity to carry research payloads to the ISS, a lack of funding to develop and launch experiments, limited crew time to conduct research, and the uncertain future of the ISS past 2015. Since that time, commercial ISS cargo flights have begun, and U.S. utilization of the ISS has been extended to 2020 (see “Crew and Cargo Access to the ISS” and “ISS Service Life Extension” below). Funding and crew time, however, likely remain as challenges for increased research utilization. Since 2011, NASA has exceeded its goal of spending an average of 35 hours per week on scientific investigations. As of mid-FY2013, research facility occupancy was 57.5%. Although the ISS is designed to support a crew of up to seven astronauts, it currently operates with a maximum of six, so that the crew can be evacuated in an emergency using two Soyuz spacecraft (which carry a maximum of three each). If a seventh

23 The text of the bilateral memoranda of understanding can be found at http://www.nasa.gov/mission_pages/station/structure/elements/partners_agreement.html.

24 For a historical perspective on the evolution of the space station’s purposes and capabilities, see Marcia S. Smith, Congressional Research Service, testimony before the Senate Committee on Commerce, Science, and Transportation, Subcommittee on Science and Space, April 20, 2005.

27 NASA Office of Legislative and Intergovernmental Affairs, email to CRS, July 5, 2013. Facility occupancy is calculated as a combination of the occupancy of internal research facility sites, the occupancy of external research facilities, and the use of available duty cycles of operational facilities.
crew member could be added, that could potentially add about 33 hours of crew research time per week—nearly double the current amount.28

The NASA Authorization Act of 2005 required NASA to allocate at least 15% of the funds budgeted to ISS research to “life and microgravity science research that is not directly related to supporting the human exploration program.”29 It also required NASA to submit a research plan for utilization of the ISS.30 Issued in June 2006, the plan described proposed R&D and utilization activities in each of six disciplinary areas.31 It characterized the ISS as a long-duration test-bed for future lunar missions; a flight analog for future missions to Mars; a laboratory for research directly related to human space exploration, such as human health countermeasures, fire suppression, and life support; and an opportunity to gain experience in managing international partnerships for long-duration space missions. The plan stated that research not related to human space exploration would continue “at a reduced level.”

At about the same time, the National Research Council issued a review of NASA’s plans for the ISS.32 This review noted “with concern” that the objectives of the ISS “no longer include the fundamental biological and physical research that had been a major focus of ISS planning since its inception.” It concluded that “once lost, neither the necessary research infrastructure nor the necessary communities of scientific investigators can survive or be easily replaced.”

In 2011, the National Research Council issued its first decadal survey (see “NRC Decadal Surveys” below) of NASA’s life and physical sciences programs.33 The report found that “The ISS is the only existing and available platform of its kind, and it is essential that its presence and dedication to research for the life and physical sciences be fully utilized in the decade ahead.” It identified research priorities, both for research that enables space exploration and for research enabled by access to space, and it made recommendations regarding management, oversight, and funding. The report “strongly” recommended “that NASA intensify the utilization of the ISS as a world-class research laboratory engaged in both basic and applied research.... The goal should be to maximize the utilization of existing facilities and to engage world-class scientists and engineers to carry out research.”

According to the NASA Administrator:

Within the limits of NASA’s budget constraints, we will closely consider the recommendations of the Decadal Survey in decisions on investments in new research facilities and capabilities for the ISS, in a research program that balances the pursuit of significant new scientific discoveries and the construction of a foundation of knowledge that supports future human exploration missions.34

29 P.L. 109-155, Section 204.
30 P.L. 109-155, Section 506.
33 National Research Council, Recapturing a Future for Space Exploration: Life and Physical Sciences Research for a New Era, 2011. This report was mandated by the explanatory statement for the Consolidated Appropriations Act, 2008 (P.L. 110-161).
34 Charles F. Bolden Jr., Administrator, National Aeronautics and Space Administration, response to questions for the (continued...)
In subsequent briefings to the National Research Council, NASA officials stated that:

- a NASA steering committee will develop a framework for implementing the decadal survey’s recommendations;
- all current ISS space biology and physical sciences experiments fit within the decadal survey’s high-priority recommendations, but numerous recommended research areas are not currently being addressed;
- results from NASA’s evaluation of the decadal survey recommendations will be adapted in future NASA solicitations for research proposals; and
- a decadal survey evaluation committee will reconvene annually to evaluate progress.\(^{35}\)

ISS National Laboratory

In an effort to increase use of the ISS by other federal agencies and the private sector, the 2005 NASA authorization act designated the U.S. portion of the ISS as a national laboratory.\(^{36}\) As required by the act, NASA submitted a plan for this designation in May 2007.\(^{37}\) It concluded that NASA use of the ISS must continue to have first priority, that use by non-NASA entities should be funded by those entities, and that “the availability of cost-effective transportation services will directly affect the ability of the ISS to operate as a national laboratory in the years to come.” The impact of the national laboratory designation was initially unclear. In the NASA Authorization Act of 2008, Congress directed NASA to establish an advisory committee on the effective utilization of the ISS as a national laboratory.\(^{38}\) NASA chartered this committee, the International Space Station National Laboratory Advisory Committee (INLAC), in 2009.\(^{39}\) NASA has not yet appointed members to the INLAC, however, because of the subsequent transition of ISS national laboratory management to an independent, nonprofit organization.\(^{40}\)

In 2010, the Senate Committee on Commerce, Science, and Transportation concluded that because of “prior shifts in NASA mission and research priorities ... an independent body should be established to ... manage the ISS national laboratory.”\(^{41}\) The 2010 authorization act directed NASA to contract with a nonprofit organization to carry out this function.\(^{42}\) Under the act, 50% of the U.S. research capacity allocation on the ISS is to be reserved for experiments managed...

\(^{35}\) Office of the Chief Scientist, National Aeronautics and Space Administration, “NASA’s Approach in Developing a Response to the Decadal Survey” (briefing charts), July 26, 2012; and D. Marshall Porterfield, Director, Life and Physical Sciences Division, Human Exploration and Operations Mission Directorate, National Aeronautics and Space Administration, briefing to the National Research Council, July 26, 2012.

\(^{36}\) P.L. 109-155, Section 507.

\(^{38}\) P.L. 110-422, Section 602.

\(^{39}\) For the current INLAC charter, renewed in October 2011, see http://oiir.hq.nasa.gov/ISS_National_Lab.pdf.

\(^{40}\) NASA Office of Legislative and Intergovernmental Affairs, e-mail to CRS, July 10, 2013.

\(^{41}\) S.Rept. 111-278.

\(^{42}\) P.L. 111-267, Section 504.
through the national laboratory process, and NASA utilization in excess of 50% is to be requested through a proposal to the managing organization. In September 2011, NASA announced the selection of the Center for the Advancement of Science in Space (CASIS) as the managing organization for the ISS national laboratory.43 CASIS issued its first solicitation for research proposals in June 2012. In November 2012, it announced the award of its first grants, which went to two universities and a small company for research on protein crystallization.44

\textbf{ISS Service Life Extension}

To increase the return on the resources invested in ISS construction, the NASA Authorization Act of 2010 extended U.S. operation and utilization of the ISS by five years to at least FY2020.45 The U.S. ISS components were designed for a 15-year lifetime from the date of deployment.46 Despite the 15-year specification, NASA has stated that past experience “clearly indicates that systems are capable of performing safely and effectively for well beyond their original design lifetime” if properly maintained, refurbished, and validated.47

The 2010 authorization act directed NASA to carry out a comprehensive review to identify spare and replacement parts that utilization through FY2020 will necessitate.48 The review identified no issues outside “the normal range of human spaceflight risk” and concluded that “the structural and non-replaceable hardware of the ISS ... [is] compatible with the extension of the ISS to 2020 either as is or with modification.”49 Assessments of this review by the Government Accountability Office found that NASA’s analysis was supported by sufficient and reliable data and used reasonable methodologies, but that estimates of the need for spare and replacement parts are sensitive to assumptions about hardware reliability.50

\textbf{Crew and Cargo Access to the ISS}

Before 2011, the space shuttle was the primary vehicle for carrying crews and cargo to and from the ISS. Russian Soyuz spacecraft also carried both crews and cargo. Russian Progress spacecraft carried cargo only, as they are not designed to survive reentry into the Earth’s atmosphere. With the final space shuttle flight in July 2011, this picture changed significantly.

43 “NASA Names CASIS to Manage Space Station National Lab Research,” NASA press release 11-294, September 9, 2011. For more information about CASIS, see http://www.iss-casis.org/.
44 Center for the Advancement of Science in Space, “CASIS Announces First Grants for Protein Crystallization,” press release November 1, 2012.
45 P.L. 111-267, Section 503(a).
46 Components were launched at various times during the ISS assembly process. The nominal reference point is generally considered to be the launch of the U.S. laboratory module Destiny in February 2001.
48 P.L. 111-267, Section 503(b)-(c).
49 National Aeronautics and Space Administration, \textit{Maintenance of the United States Segment and Assurance of Continued Operations of the International Space Station Through 2020}, January 10, 2011.
For crew access to the ISS, Soyuz spacecraft are currently the only available option. In 2009, in order to permit payments to Russia for Soyuz flights, Congress extended a waiver of the Iran, North Korea, and Syria Nonproliferation Act (P.L. 106-178 as amended) until July 1, 2016. In addition, as was the case before the end of the space shuttle program, a Soyuz is always attached to the station as a “lifeboat” in case of an emergency. The lifeboat Soyuz must be replaced every six months.52

For cargo delivery to the ISS, NASA has contracted with two U.S. companies under the Commercial Resupply Services program. The first commercial cargo mission for ISS resupply was carried out in May 2012 by Space Exploration Technologies Corporation (SpaceX) using its Dragon spacecraft and Falcon 9 rocket. The other provider, Orbital Sciences Corporation, plans to attempt its first cargo resupply mission in late 2013, using its Cygnus spacecraft and Antares rocket. The inaugural flight of the Antares (formerly known as the Taurus II) was on April 21, 2013. These commercial capabilities were developed and demonstrated under NASA’s Commercial Orbital Transportation Services (COTS) program. Noncommercial alternatives for cargo delivery, in addition to the Russian Progress, include the European Automated Transfer Vehicle (ATV) and the Japanese H-II Transfer Vehicle (HTV). All these alternatives have a significantly smaller cargo capacity than the space shuttle. Only the Dragon is capable of returning cargo to Earth.

Commercial Crew

In addition to commercial cargo services, NASA is working with U.S. companies to develop commercial services for transporting crews to and from low Earth orbit. Beginning in 2009, the Commercial Crew Development (CCDev) program worked in partnership with eight companies to develop crew transportation concepts and enabling capabilities. In August 2012, NASA announced awards under the Commercial Crew Integrated Capability (CCiCap) program to three companies—the Boeing Company, SpaceX, and Sierra Nevada Corporation—to develop integrated systems to carry crews into low Earth orbit. The Boeing and SpaceX agreements are expected to result in a critical design review of an integrated system. The Sierra Nevada agreement, with only about half as much funding, is expected to “advance ... toward critical design.”53 NASA anticipates that its commercial crew activities will result in the availability of commercial services by 2017. Some of the potential providers hope to achieve an earlier date.

In addition to oversight of how NASA and its commercial partners are progressing in the development a commercial crew capability, issues for Congress include the potential commercial market for the resulting services, NASA’s use of Space Act Agreements rather than conventional contracts with the companies involved, and processes for ensuring crew safety.

51 Consolidated Security, Disaster Assistance, and Continuing Appropriations Act of 2009 (P.L. 110-329), Section 125. For more information, see CRS Report RL34477, *Extending NASA’s Exemption from the Iran, North Korea, and Syria Nonproliferation Act*, by Carl E. Behrens and Mary Beth D. Nikitin.

52 Commercial crew transportation services, currently under development with NASA support as the planned replacement for Soyuz flights, are discussed further in the next section, “Commercial Crew.”

Competition and Commercial Demand

One argument for moving to a commercial model for crew transportation is the belief that it could reduce costs. In a commercial market, operating costs could be shared between NASA and other customers. In addition, competition among multiple providers could drive commercial companies to be more efficient. Some critics, however, question the assumptions behind the commercial approach. In particular, the likely extent of non-NASA demand for crew transportation is uncertain, and some observers doubt whether NASA demand will be sufficient to support multiple providers.

In 2011, as directed by the 2010 authorization act, NASA conducted an assessment of the commercial market for crew and cargo spacecraft. The assessment considered four market segments: the space programs of other countries, private space tourism, applied research and technology development, and other uses, such as satellite servicing, media, entertainment, and education. NASA identified a likely market for crew transportation only in the first two of these segments. Over a 10-year period, the assessment anticipated a total non-NASA market for crew transportation of between 44 and 359 individuals. The low-end estimate was driven mostly by foreign space programs. The high-end estimate was driven more by private tourism. For comparison, the assessment projected that NASA's requirements for ISS crew rotation will include two flights per year with up to four astronauts per flight. This flight rate would mean a NASA market for a total of up to 40 individuals if the service became available in 2016 and continued through 2020, the currently authorized end date for U.S. utilization of the ISS. If the same flight rate continued for the entire 10-year period of the analysis, it would mean a total NASA market of up to 80 individuals. The assessment emphasized that “market demand is extremely difficult to assess.”

The perspectives of potential providers vary. Most, although optimistic about the potential for non-NASA customers, are basing their plans primarily on the NASA market. Some are more confident about the commercial potential. For example:

There definitely is potential for a commercial market. It is in my view, not well defined, the depth of it is difficult to estimate, and so developing a business case that depends on it is a difficult thing. So we have chosen to develop a system that will be affordable if the only transportation that we do is government transportation to ISS.... In parallel, though, we are also working hard to develop a commercial market independent of that.

For our business case ... we too think we can close, even if NASA is our only business.

We are optimistic about a new market but also my company lived through the EELV [Evolved Expendable Launch Vehicle] experience where we made assumptions about a commercial market that didn’t materialize and so that scar tissue is very fresh and tender in our memories.

54 National Aeronautics and Space Administration, Commercial Market Assessment for Crew and Cargo Systems, April 27, 2011. This report was mandated by P.L. 111-267, Section 403.
55 John Elbon, Vice President and General Manager for Space Exploration, The Boeing Company, testimony before the House Committee on Science, Space, and Technology, October 26, 2011.
56 Steve Lindsey, Director of Space Exploration, Sierra Nevada Space Systems, testimony before the House Committee on Science, Space, and Technology, October 26, 2011.
57 George Sowers, Vice President, United Launch Alliance, testimony before the House Committee on Science, Space, (continued...)
In ten years there will be more commercial ... manned flights to space than there will be government. I am quite confident of that.58

If in fact the primary market is two NASA flights per year to the ISS, some observers question whether that flight rate can support more than one provider. If there were only a single provider, that would cast doubt on the idea of reducing costs through competition. The Augustine report stated that “it is crucial to the success of the program that multiple providers be carried through to operational service.”59 A NASA official testified in October 2011 that if the commercial market fails to materialize, “we could potentially support more than one [provider] but we need to see what the actual cost of the services is and then we will determine ... what we can afford in terms of number of providers.”60 For the next phase of the commercial crew certification contract, beginning in mid-2014, “NASA believes that having multiple contractors ... would provide significant advantages [for safety and cost] through competition. The ultimate number of awards will be driven by technical maturity, funding availability, and mission needs.”61 The agency’s plan, if possible, is to have “a minimum of two American companies that are capable of providing transportation to low Earth orbit, to the International Space Station, because that gives us reliable, redundant, routine access to space from an American capability.”62

Use of Space Act Agreements

The CCDev and CCiCap awards were Space Act Agreements (SAAs), rather than contracts under the Federal Acquisition Regulation (FAR).63 The use of SAAs can increase flexibility for both NASA and the company when establishing milestones, schedules, and payments. SAAs are often funded partly (and in some cases, entirely) by the company, rather than by NASA. In addition, SAAs avoid accounting requirements and other FAR rules that companies may see as expensive and cumbersome. On the other hand, the use of SAAs limits NASA’s ability to set requirements. Under an SAA, NASA “cannot dictate specific system concepts or elements or mandate compliance with its requirements. Rather, commercial partners are free to determine the system requirements and concepts they believe will best serve their target markets.”64

(...continued)

58 Elon Musk, Chief Executive Officer and Chief Technology Officer, Space Exploration Technologies Corporation, testimony before the House Committee on Science, Space, and Technology, October 26, 2011.

60 William H. Gerstenmaier, Associate Administrator, Human Exploration and Operations Mission Directorate, National Aeronautics and Space Administration, testimony before the House Committee on Science, Space, and Technology, October 26, 2011.

61 NASA FY2014 congressional budget justification, p. EXP-35.

62 Charles F. Bolden, Jr., Administrator, National Aeronautics and Space Administration, testimony before the House Committee on Science, Space, and Technology, March 7, 2012.

63 Space Act Agreements are a form of “other transaction” authorized by the National Aeronautics and Space Act of 1958 (51 U.S.C. 20113(e)). For more information, see CRS Report RL34760, \textit{Other Transaction (OT) Authority}, by L. Elaine Halchin. NASA originally planned to use a FAR-based contract (the Commercial Crew Integrated Design Contract) for the work covered by the CCiCap SAAs. It changed this plan in December 2011. See “NASA Takes Next Step in Developing Commercial Crew Program: Competitive Agreements Will Keep U.S. Commercial Space Program on Track,” NASA press release 11-419, December 15, 2011.

64 Paul Martin, Inspector General, National Aeronautics and Space Administration, testimony before the House Committee on Science, Space, and Technology, October 26, 2011.
SAAs cannot be used for procurement, and many observers believe that they would be inappropriate for activities relating to safety certification, because NASA should be able to set its own safety requirements. In December 2012, NASA issued FAR-based contracts to the three CCiCap companies to conduct early-stage activities related to safety certification. NASA also expects to use FAR-based contracts for the next phase of safety certification, beginning in mid-2014, as well as for the actual procurement of crew transportation services.

Safety of Commercial Human Spaceflight

The advent of commercial spacecraft that carry crews into space will require new processes for ensuring crew safety. In general, the Federal Aviation Administration (FAA) Office of Commercial Space Transportation is responsible for regulating the U.S. commercial space transportation industry. At present, however, the authority of the FAA to regulate commercial spacecraft for the safety of their human crews is limited. The Augustine committee concluded that commercial crew transport services would need to include “a strong, independent mission assurance role for NASA.”

Addressing the safety regulation roles of the FAA and NASA, the chairman of the FAA’s Commercial Space Transportation Advisory Committee (COMSTAC) testified in March 2012 that

Both agencies are working to ensure compatibility between NASA requirements and FAA regulations... A single, consistent regulatory and licensing regime for both government and non-government customers is critical to the long-term success of commercial human spaceflight providers and to enable the development of new customers and markets for private human spaceflight capabilities. The COMSTAC strongly supports FAA licensing of commercial human spaceflight activities, including those commercial activities conducted for [NASA].... Any customer, including NASA, can impose additional safety requirements and approval processes by contract.

The NASA Authorization Act of 2010 directed NASA to develop and make public “detailed human rating processes and requirements” for crewed commercial spacecraft that are “at least equivalent to” the existing requirements for human rating of NASA spacecraft. Issued in

66 William H. Gerstenmaier, Associate Administrator for Human Exploration and Operations, National Aeronautics and Space Administration, testimony before the House Committee on Science, Space, and Technology, September 14, 2012.
67 See http://www.faa.gov/about/office_org/headquarters_offices/ast/about/.
68 Until October 1, 2015, the FAA “may issue regulations governing the design or operation of a launch vehicle to protect the health and safety of crew and space flight participants” only when “restricting or prohibiting design features or operating practices that ... have resulted in a serious or fatal injury ... to crew or space flight participants during a licensed or permitted commercial human space flight” or that have “contributed to an unplanned event or series of events ... that posed a high risk” of doing so (51 U.S.C. 50905(c)). This moratorium was extended by Section 827 of the FAA Modernization and Reform Act of 2012 (P.L. 112-95).
70 Wilbur C. Trafton, Chairman, Commercial Space Transportation Advisory Committee, testimony before the House Committee on Science, Space, and Technology, March 20, 2012.
71 P.L. 111-267, Section 403(b)(1). The existing requirements are specified in NASA Procedural Requirement 8705.2B, (continued...)
December 2010, this document asserts that “a crew transport capability that meets the safety requirements in this document will be approximately an order of magnitude safer than the space shuttle.” A NASA official testified in September 2012 that

> NASA is committed to ensuring that the requirements, standards, and processes for [Crew Transportation System] certification for all commercial missions are held to the same or equivalent safety standards as Government human spaceflight missions. NASA certification will cover all aspects of a crew transportation system, including: development, test, evaluation, and verification; program management and control; flight readiness certification; launch, landing, recovery, and mission operations; sustaining engineering, and maintenance/upgrades.73

NASA’s Aerospace Safety Advisory Panel has identified two long-standing concerns that it believes NASA has not yet adequately addressed. First, NASA should clearly lay out a process for contractors to follow on the path to certification. Second, NASA’s budget should be “at a level sufficient to execute the plan.”74

Multipurpose Crew Vehicle and Space Launch System

For human spaceflight beyond Earth orbit, the NASA Authorization Act of 2010 directed NASA to develop a Multipurpose Crew Vehicle (MPCV) and a rocket known as the Space Launch System (SLS) to carry the MPCV into orbit.75 The act directed that the MPCV should “continue to advance the development” of the Constellation program’s Orion capsule. Indeed, the MPCV is now generally referred to as Orion. The act also directed that, in addition to their primary mission beyond Earth orbit, the MPCV and SLS should be capable of delivering crews and cargo to the ISS, if commercial and other alternative services are not available.

Issues for Congress include the schedule for Orion and SLS development and the likely schedule of flights once operational, the payload capability of the SLS, the potential use of Orion and the SLS for crew access to the ISS if commercial crew transportation services fail to materialize, and the destination for human exploration using Orion and the SLS once they are available.

Orion/SLS Schedule

The 2010 NASA authorization act established December 31, 2016, as the target date for achieving full operational capability for the MPCV and an initial version of the SLS. In January 2011, however, NASA reported that it was unable to identify spacecraft designs that met the act’s

(...continued)

Human-Rating Requirements for Space Systems, http://nodis3.gsfc.nasa.gov/displayDir.cfm?t=NPR&c=8705&s=2B.

73 William H. Gerstenmaier, Associate Administrator for Human Exploration and Operations, National Aeronautics and Space Administration, testimony before the House Committee on Science, Space, and Technology, September 14, 2012.

75 P.L. 111-267, Sections 302 and 303.
capability and schedule mandates within the authorized funding levels.76 NASA currently plans an uncrewed test flight of Orion and SLS in 2017 and a flight with a crew on board in 2021. An uncrewed test flight of Orion without the SLS (on an existing Delta IV rocket) is planned for 2014.

Congressional advocates of the SLS have sought to accelerate this schedule. According to NASA, the date of the 2017 test flight would be difficult to bring forward, even with additional funding, because it depends on technical requirements such as engineering design and manufacturing schedules and the need for adequate testing.77 Accelerating the schedule for the 2021 flight may be more feasible. For example, a contractor representative testified in 2012 that

> The initial flight scheduled for 2017 is constrained by the schedule needed to develop, integrate ... and test the SLS core stage. Increased funding would not accelerate the 2017 flight, but would provide additional schedule confidence. The 2021 flight on the other hand is constrained by the currently proposed budgets. If additional funds were applied to the SLS core stage, the 2021 flight could be accelerated.78

According to NASA:

> NASA has developed an executable plan ... to support the first human flight in 2021. There are multiple variables involved, both technical and budgetary.... NASA will re-evaluate the projected 2021 launch date over the next few years to assess the potential for ... an earlier launch opportunity.79

Another schedule concern is the expected launch rate once Orion and the SLS become operational. Following the first crewed flight in 2021, NASA expects subsequent missions to occur approximately once every two years. According to the chairman of the NASA Advisory Council:

> The low flight rate projected for SLS and Orion is a serious problem. No human-rated launch system in NASA’s history has flown so infrequently. With such a low launch rate it will not just be difficult to maintain program momentum; it will be difficult to keep flight teams sharp and mission-ready.80

77 See, for example, Charles F. Bolden, Jr., Administrator, National Aeronautics and Space Administration, testimony before the House Committee on Science, Space, and Technology, March 7, 2012.

78 Jim Chilton, Exploration Vice President, The Boeing Company, response to questions for the record, hearing before the House Committee on Science, Space, and Technology, September 12, 2012.

79 Daniel L. Dumbacher, Deputy Associate Administrator for Exploration Systems Development, National Aeronautics and Space Administration, response to questions for the record, hearing before the House Committee on Science, Space, and Technology, September 12, 2012. This response is omitted from the published hearing record. It was provided to CRS by the NASA Office of Legislative and Intergovernmental Affairs, July 1, 2013.

80 Steven W. Squyres, Goldwin Smith Professor of Astronomy, Cornell University, testimony before the House Committee on Science, Space, and Technology, June 19, 2013.
SLS Payload Mass

The 2010 act specifies that the initial version of the SLS is to be capable of lifting payloads weighing between 70 and 100 metric tons into low Earth orbit, and a subsequent version is to be capable of lifting payloads weighing at least 130 metric tons. Some early reactions to this mandate were skeptical. In the floor debate on the act, one Member referred to the SLS as “a rocket designed by Senators and not by engineers ... a rocket that doesn’t meet [NASA’s] needs.”81 The NASA Administrator argued that the 130 metric ton capability was unnecessary in the near term, and that building a rocket of that size now would be premature, because by the time a 130 metric ton capability is needed, technology will have advanced:

> Not only is it not wise, it’s not necessary for us to build a 130-metric-ton, heavy-lift vehicle right off the bat. By the time we need to go ... to Mars or to an asteroid, [for which] you need a 130-metric-ton vehicle ... its weight may be significantly less than what a 130-metric-ton vehicle is today because we’re using composite tanks.82

Others view the 130 metric ton version as essential. For example, a Member recently stated:

> As important as building the rocket is building the right rocket, the 130 metric ton version, not the half-capable 70 metric ton first step....83

NASA has identified three generations of the SLS: Block 1, with a lift capability of 70 metric tons; Block 1A, 105 metric tons; and Block 2, 130 metrics tons. These three versions will “fulfill specific, important roles within the exploration architecture”:

- Block 1 “will prove out the new Core Stage and integrated stack for the initial exploration missions and can support scientific payloads with requirements beyond commercial lift capabilities.”
- Block 1A “provides significant ‘mission capture’ for the next set of human missions beyond” low Earth orbit.
- Block 2 “would be used for full capability asteroid missions and ultimately missions to Mars.”84

Orion/SLS as Backup Option for ISS Access

Although the Orion and the SLS are primarily intended for exploration beyond Earth orbit, the 2010 NASA authorization act directs that they should be capable of serving as a backup system for delivering crew and cargo to the ISS in the event that commercial and partner-supplied spacecraft are not available.85 The Augustine report concluded that if NASA’s efforts to develop a commercial crew capability fail, “the most cost-effective fallback option ... is to continue to

82 Charles F. Bolden, Jr., Administrator, National Aeronautics and Space Administration, remarks at the Center for Strategic and International Studies, *NASA and Accelerating American Innovation*, March 10, 2011.
84 Daniel L. Dumbacher, Deputy Associate Administrator for Exploration Systems Development, National Aeronautics and Space Administration, testimony before the House Committee on Science, Space, and Technology, September 12, 2012.
85 P.L. 111-267, Sections 302(c)(1)(D) and 303(b)(3).
develop the Orion, and move as quickly as possible to the development of a human-ratable heavy lift vehicle" (such as the SLS).86

One concern about this approach is that the planned lift capability of the SLS far exceeds what is required for ISS access. The Ares I, which would have launched Orion into Earth orbit under the Constellation program, would have had a payload mass of about 25 metric tons. The overcapacity of the SLS (70 metric tons, even in Block 1) would likely make it an expensive option for ISS missions.

Another concern is that the currently authorized end date for U.S. utilization of the ISS is in 2020. This is before the planned date of even the first test flight of Orion and the SLS with a crew on board. Orion and the SLS could therefore be available as a backup for ISS access only if the service life of the ISS is extended (see “ISS Service Life Extension” above) or if the availability of Orion and SLS can be brought forward.

If NASA’s efforts to develop a commercial crew capability fail, however, the only other alternative for crew access to the ISS would be to continue paying Russia for Soyuz flights. Many policymakers consider this an inherently unattractive option. It would also require a further extension of a waiver of the Iran, North Korea, and Syria Nonproliferation Act (see “Crew and Cargo Access to the ISS” above).

Destinations for Human Exploration Beyond Earth Orbit

From 2004 to 2010, the Vision for Space Exploration established the Moon, followed eventually by Mars, as NASA’s goal for human exploration beyond Earth orbit. In considering possible modifications to the Vision, space policy experts and other interested observers suggested various alternative goals. For example, some proposed that Mars should be the immediate objective, rather than returning to the Moon first.87 Others suggested human missions to asteroids or other solar system locations that would be less technologically challenging than an immediate mission to Mars, while still being worthwhile scientifically and as steps toward subsequent destinations. According to the Augustine committee:

> Mars stands prominently above all other opportunities for exploration. Mars is unquestionably the most scientifically interesting destination in the inner solar system, with a planetary history much like Earth’s. It possesses resources that can be used for life support and propellants ... But Mars is not an easy place to visit.88

The committee concluded that while Mars is the ultimate destination for human exploration, it is “not a viable first destination” because of the likely cost and the “considerable” safety risk with current technology.89

87 See, for example, the advocacy of the Mars Society, http://www.marsociety.org/.
The Obama Administration’s plan, first articulated in April 2010, is for an asteroid to be NASA's first destination beyond Earth orbit, followed by an orbit of Mars and subsequently a Mars landing. NASA states that it plans to send humans to an asteroid by 2025 and to Mars in the 2030s. This plan appears to be consistent with the NASA Authorization Act of 2010, which states that “a long-term objective for human exploration of space should be the eventual international exploration of Mars.” The act also, however, mandates a review by National Academies of the goals, capabilities, and direction of human space flight. The report of that review is anticipated in May 2014.

An earlier National Academies study found little evidence that a current stated goal for NASA’s human spaceflight program—namely, to visit an asteroid by 2025—has been widely accepted as a compelling destination by NASA’s own workforce, by the nation as a whole, or by the international community. On the international front there appears to be continued enthusiasm for a mission to the Moon but not for an asteroid mission, although there is both U.S. and international interest in robotic missions to asteroids.

It is possible that the explosion of a small asteroid over Chelyabinsk, Russia, in February 2013 may increase congressional and public interest in asteroids as destinations for human exploration. (See “Near-Earth Objects” below.)

In the FY2014 budget, NASA proposed an asteroid retrieval mission that would capture a small asteroid robotically, redirect it into orbit around the Moon, and explore it with astronauts as an early destination for Orion and the SLS, perhaps as soon as the first crewed flight in 2021. NASA argues that this mission would provide a useful early destination for Orion and the SLS while at the same time meeting other goals for the science of asteroids and the demonstration of advanced technology. For example, a robotic spacecraft using new solar electric propulsion technology (which NASA is developing anyway, for other purposes) would be used to redirect the target asteroid’s orbit. A study of a possible asteroid retrieval mission by the Keck Institute for Space Studies concluded in 2012 that “placing a 500-[tonne] asteroid in high lunar orbit would provide a unique, meaningful, and affordable destination for astronaut crews in the next decade” and estimated that the full life-cycle cost might be about $2.6 billion. According to NASA officials, the proposed NASA mission differs in several respects from the mission examined by the Keck Institute, and the cost, while not yet determined, “will be something less than their estimate.” The proposed NASA mission has met with opposition in Congress. For example, the chairman of

91 See, for example, Charles F. Bolden, Jr., Administrator, National Aeronautics and Space Administration, testimony before the House Committee on Science, Space, and Technology, April 24, 2103.
92 P.L. 111-267, Section 301(a)(5).
93 P.L. 111-267, Section 204.
94 For more information on the National Academies review and how it is being conducted, see http://www8.nationalacademies.org/cp/projectview.aspx?key=49501.
96 Keck Institute for Space Studies, Asteroid Retrieval Feasibility Study, 2 April 2012, p. 6. Additional information on the study is available at http://www.kiss.caltech.edu/study/asteroid/.
97 Charles F. Bolden, Jr., Administrator, National Aeronautics and Space Administration, testimony before the House Committee on Science, Space, and Technology, April 24, 2103.
the Subcommittee on Space of the House Committee on Science, Space, and Technology has stated that the proposal lacks detail, justification, and support from NASA’s own advisory bodies and “appears to be a costly and complex distraction.”

FY2014 Budget and Appropriations

Human spaceflight activities at NASA are funded by two appropriations accounts. The Exploration account funds the development of future capabilities, including the Orion Multipurpose Crew Vehicle, the Space Launch System, and the Commercial Crew program. Space Operations funds operational programs: the International Space Station, including the cost of Soyuz flights to carry U.S. astronauts to and from the ISS and commercial cargo flights for ISS resupply; the Space and Flight Support program, which supports activities such as launch services and space-ground communications; and the remaining closeout costs for the space shuttle. Table 2 shows the allocation of human spaceflight funding among these activities.

Table 2. NASA Human Spaceflight Funding, FY2012-FY2014

<table>
<thead>
<tr>
<th></th>
<th>FY2012 Actual</th>
<th>FY2013 Enacted</th>
<th>FY2014 Request</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exploration</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exploration Systems Development</td>
<td>3,001.6</td>
<td>2,990.7</td>
<td>2,730.0</td>
</tr>
<tr>
<td>- Orion Multi-Purpose Crew Vehicle</td>
<td>1,200.0</td>
<td>1,172.2</td>
<td>1,026.8</td>
</tr>
<tr>
<td>- Space Launch System</td>
<td>1,497.1</td>
<td>1,424.1</td>
<td>1,384.9</td>
</tr>
<tr>
<td>- Exploration Ground Systems</td>
<td>304.5</td>
<td>394.4</td>
<td>318.2</td>
</tr>
<tr>
<td>Commercial Spaceflight</td>
<td>406.0</td>
<td>514.1</td>
<td>821.4</td>
</tr>
<tr>
<td>Exploration Research and Development</td>
<td>299.7</td>
<td>301.6</td>
<td>364.2</td>
</tr>
<tr>
<td>Space Operations</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>International Space Station</td>
<td>2,789.9</td>
<td>2,896.7</td>
<td>3,049.1</td>
</tr>
<tr>
<td>Space and Flight Support</td>
<td>797.9</td>
<td>905.8</td>
<td>833.8</td>
</tr>
</tbody>
</table>

Sources: FY2012 actual and FY2014 request from NASA’s FY2014 congressional budget justification. FY2013 enacted from P.L. 113-6 and explanatory statement, Congressional Record, March 11, 2013, pp. S1308-S1310. FY2013 enacted amounts are adjusted for the rescissions in P.L. 113-6, Sec. 3001 and Sec. 3004, but not for subsequent sequestration or reprogramming.

In the Exploration account, the Administration’s FY2014 request for Commercial Spaceflight, which funds the Commercial Crew program, is a substantial increase, while the request for Orion, the SLS, and related ground systems is a decrease. In the past, many in Congress have seen similar budget requests as a difference in human spaceflight priorities between Congress and the Administration, and this perceived difference has been controversial. According to NASA, the

99 The Commercial Spaceflight budget item no longer includes funding for commercial cargo activities, as they have moved from development to operations.
amounts requested are consistent with the planned schedules for both Commercial Crew and Orion/SLS. NASA officials state that the request for Commercial Crew is necessary to make commercial crew transportation services available as planned in 2017, while the request for Orion and SLS is sufficient to achieve the planned first uncrewed flight in 2017 and the planned first crewed flight in 2021. The Administration’s request for Exploration also includes $45 million related to the proposed asteroid retrieval mission; this funding would be used for mission definition and the planning and development of capture mechanisms.

In the Space Operations account, the Administration has requested no FY2014 funding for the space shuttle program, because NASA expects to complete closeout of the program with FY2013 funds. Most of the increase in ISS funding between FY2012 and the FY2014 request results from increased costs for crew and cargo transportation services.

Science

NASA’s Science Mission Directorate conducts research through its Earth Science, Planetary Science, Astrophysics, and Heliophysics Divisions. In addition, the Joint Agency Satellite Division conducts systems engineering, hardware development, and acquisition of operational satellites on behalf of other agencies. This section discusses selected issues of interest to Congress: the use of decadal surveys for Science program planning at NASA; the Earth Science program and its relationship with Earth-observing satellite activities at other agencies; Mars exploration and near-Earth object research in the Planetary Science program; the James Webb Space Telescope in the Astrophysics program; and FY2014 budget and appropriations issues for NASA Science.

NRC Decadal Surveys

The Science Mission Directorate makes extensive use of the National Research Council (NRC) for program planning and prioritization. The NRC has been publishing decadal surveys for nearly 50 years. These reports typically provide recommendations and priorities for research in a particular field of science or engineering over the decade following publication. The process of preparing such studies usually includes multiple opportunities for input from the scientific community. The resulting reports are therefore generally taken to represent that community’s consensus view, and Congress frequently cites decadal surveys in support of particular NASA programs or missions. According to NASA’s congressional budget justification for FY2014:

NASA uses the recommendations of the National Academies’ decadal surveys for guidance in planning the future of its science programs. For over 30 years, decadal surveys have proven indispensable in establishing a broad national science community consensus on the state of the science, the highest priority science questions to be addressed, and actions that could be taken to address those priority science topics. NASA uses these recommendations to prioritize future flight missions, including space observatories and probes, as well as technology development and proposals for theoretical and suborbital supporting research. NASA must adapt science-based decadal survey recommendations to actual budgets,

existing technological capabilities, national policy, partnership opportunities, and other programmatic factors.101

Earth Science

NASA describes the goal of the Earth Science program as “to study planet Earth from space to advance scientific understanding and meet societal needs.”102 In the 2011 NASA strategic plan, Strategic Goal 2.1 is to “advance Earth system science to meet the challenges of climate and environmental change.”103 The statutory goal of the Earth Science program is:

> to pursue a program of Earth observations, research, and applications activities to better understand the Earth, how it supports life, and how human activities affect its ability to do so in the future.104

The Earth Science program has expanded in recent years. The NRC recommended in its 2007 decadal survey that the United States “should renew its investment in Earth observing systems and restore its leadership in Earth science and applications.”105 In response, Congress and the Administration increased the share of NASA’s Science funding devoted to Earth Science from 26% in FY2008 to 35% in FY2013 and 37% in the President’s FY2014 request. The NASA Authorization Act of 2010 directed NASA to “undertake to implement, as appropriate, missions identified in the National Research Council’s Earth Science Decadal Survey.”106 Because much of the program supports research relating to climate change, however, some in Congress object to proposals to increase support for Earth Science when other NASA activities face decreases.

Congressional policymakers have also taken a long-standing interest in the relationship between NASA’s Earth Science program and the satellite programs of the National Oceanic and Atmospheric Administration (NOAA), which operates Earth-observing satellites for weather forecasting and other purposes, and the U.S. Geological Survey (USGS), which operates the Landsat land-imaging satellites. The NASA Authorization Act of 2010 directed the Office of Science and Technology Policy to develop a strategic plan, updated at least every three years, to ensure greater cooperation among U.S. civilian Earth observation programs, and directed NASA to coordinate with NOAA and USGS to establish a formal mechanism to transition NASA research and assets to NOAA and USGS operations.107 Given the extent to which these

102 http://science.nasa.gov/about-us/organization-and-leadership/division-bios/.

104 51 U.S.C. 60501

106 P.L. 111-267, Section 704.

107 P.L. 111-267, Sections 702 and 703. The strategic plan was issued as Executive Office of the President, National Science and Technology Council, National Strategy for Civil Earth Observations, April 2013, http://www.whitehouse.gov/sites/default/files/microsites/ostp/nstc_2013_earthobsstrategy.pdf.
requirements overlap with earlier provisions in the 2005 and 2008 NASA authorization acts, achieving Congress’s goals for the NASA-NOAA relationship appears to be challenging.

The Joint Agency Satellite Division acquires operational Earth-observing satellites for NOAA on a cost-reimbursement basis, using funds appropriated to NOAA. In the 112th Congress, the Senate Committee on Appropriations recommended funding these activities in NASA’s budget instead. It is not yet clear whether this proposal will be renewed in the 113th Congress.

Mars Exploration

NASA’s goals for the Mars Exploration program, an activity of the Planetary Science Division, are to determine whether life ever arose on Mars, to characterize the climate of Mars, to characterize the geology of Mars, and to prepare for human exploration. In 2011, an NRC decadal survey identified three high-priority science goals: to determine whether life ever arose on Mars, to understand the processes and history of the Martian climate, and to determine the evolution of the Martian surface and interior. These goals appear to be consistent with the first three goals articulated by NASA. The decadal survey did not address the fourth NASA goal, relating to human exploration.

NASA has proposed near-term reductions in funding for Mars Exploration. The Mars Science Laboratory mission was launched in November 2011 and landed on Mars in August 2012, delivering the Mars rover Curiosity, whose discoveries include the first evidence of flowing streambeds on Mars. The Mars Atmosphere and Volatile Evolution (MAVEN) mission, intended to answer scientific questions about liquid water on Mars, atmospheric loss, climate history, and habitability, is scheduled for launch in November 2013. In general, costs for mission formulation, development, and implementation are higher than costs for operations after launch. Nevertheless, advocates may fear that near-term cuts could have long-term impacts.

Near-Earth Objects

Another Planetary Science activity, research on near-Earth objects (NEOs), has received increased congressional and public attention following the explosion of a small asteroid over Chelyabinsk, Russia, in February 2013. NEOs are asteroids and comets that come close to Earth’s orbit. In addition to their scientific interest, many policymakers are concerned about the threat they could pose to human life and property, were they to collide with Earth. The House Committee on Science, Space, and Technology held hearings in March and April 2013 on government and private-sector efforts to track and mitigate the threat of NEOs. The Senate

112 For further information, see http://mars.jpl.nasa.gov/msl/.
113 For further information, see http://mars.jpl.nasa.gov/programmissions/missions/future/maven/.
114 For more information on the NASA Near-Earth Object program, see http://neo.jpl.nasa.gov/.
115 The NASA Authorization Act of 2005 defines a near-Earth object as an asteroid or comet whose nearest approach to the Sun is less than 1.3 times the distance of the Earth from the Sun (P.L. 109-155, Section 321).
Committee on Commerce, Science, and Transportation held a hearing in March 2013 on space threats, including NEOs.

In 1998, NASA committed to cataloging 90% of the NEOs larger than 1 kilometer in diameter within 10 years.116 As of June 2013, 861 asteroids of this size had been discovered.117 NASA estimates that this represents about 95% of the total.118 While a NEO of this size that struck the Earth “would cause a global catastrophe,” none of those yet discovered pose any threat of Earth impact within the next 100 years.119 The NASA Authorization Act of 2005 directed NASA to expand its NEO survey to all objects larger than 140 meters in diameter and to catalog 90% of such objects within 15 years.120 An NRC report in 2010 made recommendations for achieving this goal and for NEO hazard mitigation.121

By comparison, the Chelyabinsk asteroid was 17 to 20 meters in diameter.122 The object that caused the 1908 Tunguska explosion, believed to be the largest impact event in recorded history, was probably between 50 and 100 meters in diameter.123 The target of NASA’s proposed asteroid retrieval mission (see “Destinations for Human Exploration Beyond Earth Orbit” above) is expected to be 7 to 10 meters in diameter.124

James Webb Space Telescope

The James Webb Space Telescope (JWST), a project of the Astrophysics Division, is a planned successor to the Hubble Space Telescope. Unlike Hubble, which orbits the Earth at an altitude of 353 miles, JWST is designed to operate in deep space, about 1 million miles from Earth. Its primary mirror is larger than Hubble’s, and its instruments are being optimized for infrared rather than visible light. This is expected to allow it to observe objects farther away and further back in time, as well as relatively cool objects such as protostars and protoplanetary disks. NASA plans to launch JWST in October 2018.

Cost increases and schedule delays made JWST controversial in previous Congresses. Following an independent review in 2010, NASA developed a revised plan for the JWST program in 2011. In 2012, Congress capped the formulation and development cost of JWST at $8 billion and mandated annual reports on the program by the Government Accountability Office.125 In the first of these annual reports, GAO’s recommendations to NASA included improvements to the JWST

116 Carl Pilcher, Science Director, Solar System Exploration, National Aeronautics and Space Administration, testimony before the House Committee on Science, May 21, 1998.

118 James Green, Director, Planetary Science Division, National Aeronautics and Space Administration, testimony before the Senate Committee on Commerce, Science and Transportation, March 20, 2013.

119 Ibid.

120 P.L. 109-155, Section 321, known as the George E. Brown, Jr. Near-Earth Object Survey Act.

121 National Research Council, *Defending Planet Earth: Near-Earth Object Surveys and Hazard Mitigation Strategies*, 2010.

124 Personal communication between NASA and CRS, June 6, 2013.

125 Consolidated and Further Continuing Appropriations Act, 2012 (P.L. 112-55) and H.Rept. 112-284.
cost estimate; an additional, earlier independent review of test and integration activities; and a long-term oversight plan reflecting planned travel budget reductions. Continued congressional oversight of the program is likely.

FY2014 Budget and Appropriations

NASA's Science appropriations account includes funding for each of the four Science Mission Directorate research divisions. Funding for the James Webb Space Telescope is budgeted separately from funding for the rest of the Astrophysics Division. See **Table 3**.

Table 3. NASA Science Funding, FY2012-FY2014

(budget authority in millions of dollars)

<table>
<thead>
<tr>
<th></th>
<th>FY2012 Actual</th>
<th>FY2013 Enacted</th>
<th>FY2014 Request</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science</td>
<td>$5,073.7</td>
<td>$5,037.4</td>
<td>$5,017.8</td>
</tr>
<tr>
<td>Earth Science</td>
<td>1,760.5</td>
<td>1,748.0</td>
<td>1,846.1</td>
</tr>
<tr>
<td>Planetary Science</td>
<td>1,501.4</td>
<td>1,385.7</td>
<td>1,217.5</td>
</tr>
<tr>
<td>Astrophysics</td>
<td>648.4</td>
<td>655.1</td>
<td>642.3</td>
</tr>
<tr>
<td>James Webb Space Telescope</td>
<td>518.6</td>
<td>615.0</td>
<td>658.2</td>
</tr>
<tr>
<td>Heliophysics</td>
<td>644.8</td>
<td>633.6</td>
<td>653.7</td>
</tr>
</tbody>
</table>

Sources: FY2012 actual and FY2014 request from NASA's FY2014 congressional budget justification. FY2013 enacted from P.L. 113-6 and explanatory statement, *Congressional Record*, March 11, 2013, pp. S1308-S1310. FY2013 enacted amounts are adjusted for the rescissions in P.L. 113-6, Sec. 3001 and Sec. 3004, but not for subsequent sequestration or reprogramming.

In Planetary Science, the Administration’s budget request for FY2014 includes $40.5 million for observation of near-Earth objects. This total includes $20 million related to the proposed asteroid retrieval mission (see “Destinations for Human Exploration Beyond Earth Orbit” above) for identification and characterization of a suitable target asteroid.

The Planetary Science request also includes $50 million for management of a Department of Energy (DOE) program to produce plutonium-238, which some spacecraft use for power generation. In the past, congressional policymakers have disagreed about whether NASA or DOE should fund DOE production of plutonium-238 for NASA.

The FY2014 request for the Mars Exploration program, also in Planetary Science, is $234 million, down from $587 million in FY2012. This reduction more than accounts for the reduction in funding for Planetary Science as a whole. Although NASA's congressional budget justification for FY2014 projects roughly flat future-year funding for Planetary Science, it

projects substantial increases for Mars Exploration starting in FY2016, as future missions are selected and implemented.128

The FY2014 budget request for Earth Science includes $30 million to begin development of future land imaging capabilities to replace the current Landsat satellites, as well as funds to assume responsibility for certain Earth-observing satellite instruments previously held by NOAA. This proposal has renewed congressional concerns about the relationship between NASA, NOAA, and USGS.

NASA expects FY2014 to be the peak funding year for JWST and states that the JWST budget and schedule proposed in the Administration’s FY2014 budget remain consistent with the 2011 revised plan.

Space Technology

In 2009, both the Augustine committee and the NRC recommended a greater emphasis on technology development as a complement to NASA’s human spaceflight activities. The Augustine committee described NASA’s space technology program as “an important effort that has significantly atrophied over the years.”129 It recommended that technology development be closely coordinated with ongoing programs, but conducted independently of them. The NRC recommended that NASA revitalize its advanced technology development program by establishing an independent, DARPA-like organization that would support research serving both NASA and the private sector.130 The NASA Authorization Act of 2010 gave formal approval to the establishment of a new space technology program.131 Initially, the program was conducted through the Office of the Chief Technologist. In February 2013, NASA established it as a separate Space Technology Mission Directorate (STMD).

Strategic Planning

In 2010, NASA identified 14 space technology areas and prepared draft roadmaps identifying “the top technical challenges [in each area], the spaceflight missions they could impact or enable, and—as a byproduct—the important terrestrial fields they could advance.”132 The NRC evaluated and prioritized the results of this effort.133 The technology priorities identified by the NRC have

128 NASA’s FY2014 congressional budget justification describes its future-year projections as “notional,” but at the level of individual programs, they are widely viewed as an indicator of the agency’s plans, even if the specific amounts are subject to change.

131 P.L. 111-267, Section 904.

132 National Aeronautics and Space Administration, “Space Technology Roadmaps: The Future Brought To You By NASA,” http://www.nasa.gov/offices/oct/home/roadmaps/.

been incorporated into revised roadmaps and are the basis of the current STMD research and development portfolio.

When establishing the space technology program, the 2010 authorization act directed NASA to prepare an implementation plan. The resulting plan stated that NASA would use the space technology roadmaps and three thematic grand challenges—expanding human presence in space, managing in-space resources, and enabling transformational space exploration and scientific discovery—to guide and prioritize the space technology portfolio and its future investments. The plan also identified three categories of technology to be developed: early-stage innovation, game-changing technology, and crosscutting capability demonstrations.

An expanded strategic plan for space technology, released in December 2012, identified four strategic goals:

- extend and sustain human presence and activities in space;
- explore the structure, origin, and evolution of the solar system, and search for life past and present through in-situ measurements;
- expand understanding of the Earth and the universe through remote measurements; and
- energize the domestic space enterprise and extend the benefits of space for the nation.

To achieve these goals, the strategic plan identified three categories of technology investments. It concluded that core investments—in near-term technologies needed for mission-specific objectives—should make up 70% of the STMD portfolio. Adjacent investments—in high-priority but longer-term technologies that are not strategically indispensable—should be 20% of the portfolio. Complementary investments—in a broad range of technologies with long-term potential—should be 10% of the portfolio. It identified eight areas for core technology investments: launch and in-space propulsion; high data-rate communications; lightweight space structures and materials; robotics and autonomous systems; environmental control and life-support systems; space radiation mitigation; scientific instruments and sensors; and entry, descent, and landing.

The 2010 NASA authorization act also directed the Administration to develop a national policy to guide space technology development programs across the federal government through 2020. In a January 2013 report, NASA provided a non-exhaustive list of interagency collaboration groups related to space technology and stated that NASA engages with Federal agencies to encourage and promote the development of technologies of mutual benefit, and works together with these partners to identify and avoid

134 P.L. 111-267, Section 905.
137 P.L. 111-267, Section 906.
any unnecessary duplication of effort and resources. ... This collaboration also takes place with the sharing of scientific data and instrument development.138

FY2014 Budget and Appropriations

As has been true each year since the program was first proposed in the FY2011 budget, the Administration’s FY2014 request for Space Technology is a substantial increase (see Table 4). The requested funds would support existing projects that are moving from the planning and design phase to the more expensive tasks of hardware manufacture and demonstration. The request also includes funds to accelerate the development of high-power solar electric propulsion technology for future spacecraft, including $40 million related to the proposed asteroid retrieval mission (see “Destinations for Human Exploration Beyond Earth Orbit” above).

Table 4. NASA Space Technology Funding, FY2012-FY2014
(budget authority in millions of dollars)

<table>
<thead>
<tr>
<th>FY2012 Actual</th>
<th>FY2013 Enacted</th>
<th>FY2014 Request</th>
</tr>
</thead>
<tbody>
<tr>
<td>$573.7</td>
<td>$628.7</td>
<td>$742.6</td>
</tr>
</tbody>
</table>

Sources: FY2012 actual and FY2014 request from NASA’s FY2014 congressional budget justification. FY2013 enacted from P.L. 113-6 and explanatory statement, Congressional Record, March 11, 2013, pp. S1308-S1310. FY2013 enacted amounts are adjusted for the rescissions in P.L. 113-6, Sec. 3001 and Sec. 3004, but not for subsequent sequestration or reprogramming.

Aeronautics

In addition to its space activities, NASA conducts research on aeronautics, the science and technology of flight within Earth’s atmosphere. There is a history of disagreement in Congress about the appropriate role of this program. Supporters argue that the aviation industry is vital to the U.S. economy, especially because aircraft are a major component of U.S. exports. They claim that government funding for aeronautics research can contribute to U.S. competitiveness and is necessary in light of similar programs in Europe and elsewhere. Opponents counter that the aviation industry itself should pay for its research and development needs. Against the background of this debate, NASA aeronautics programs have focused increasingly on long-term fundamental research and on research and development topics with clear public purposes, such as reducing noise and emissions, improving safety, and improving air traffic control.

FY2014 Budget and Appropriations

The Administration’s FY2014 budget request for Aeronautics (see Table 5) is similar to the FY2012 appropriation. An increase for Integrated Systems Research would support a new program on advanced composite materials and structures for aircraft. Funding for Fundamental Aeronautics would drop as NASA explores options for the future of its research on rotorcraft.

(such as helicopters). The planning of rotorcraft research will be coordinated with other government agencies and industry partners.

Table 5. NASA Aeronautics Funding, FY2012-FY2014

<table>
<thead>
<tr>
<th>Aeronautics</th>
<th>FY2012 Actual</th>
<th>FY2013 Enacted</th>
<th>FY2014 Request</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aviation Safety</td>
<td>80.1</td>
<td>—</td>
<td>80.0</td>
</tr>
<tr>
<td>Airspace Systems</td>
<td>92.7</td>
<td>—</td>
<td>91.5</td>
</tr>
<tr>
<td>Fundamental Aeronautics</td>
<td>186.3</td>
<td>—</td>
<td>168.0</td>
</tr>
<tr>
<td>Aeronautics Test</td>
<td>79.4</td>
<td>—</td>
<td>77.0</td>
</tr>
<tr>
<td>Integrated Systems Research</td>
<td>104.2</td>
<td>—</td>
<td>126.5</td>
</tr>
<tr>
<td>Aeronautics Strategy and Management</td>
<td>27.2</td>
<td>—</td>
<td>22.7</td>
</tr>
</tbody>
</table>

Sources: FY2012 actual and FY2014 request from NASA’s FY2014 congressional budget justification. FY2013 enacted from P.L. 113-6 and explanatory statement, Congressional Record, March 11, 2013, pp. S1308-S1310. FY2013 enacted amounts are adjusted for the rescissions in P.L. 113-6, Sec. 3001 and Sec. 3004, but not for subsequent sequestration or reprogramming.

Note: The FY2013 explanatory statement did not specify funding for individual items within the Aeronautics account.

Education

In addition to NASA’s Office of Education, historically, the mission directorates have conducted substantial education activities. Notably, the Science Mission Directorate had a policy for many years that each spacecraft mission should “allocate at least 1% of the mission budget for education and public outreach activities.”\(^{139}\) In some years, funding for education activities in the mission directorates has been comparable to the funding of the Office of Education.

Reorganization Proposal

In the FY2014 budget, the Administration proposed a government-wide reorganization of activities in science, technology, engineering, and mathematics (STEM) education. As part of this planned reorganization, numerous NASA education activities would be terminated, including all those conducted by the Science Mission Directorate. While multiple federal agencies would be affected by the reorganization plan, nearly half of the activities proposed for termination (37 out of 78) are at NASA.\(^{140}\) A reduced level of NASA funding for STEM education would be consolidated in the Office of Education, and more funding would be directed to STEM education activities at the National Science Foundation, the Department of Education, and the Smithsonian Institution. According to NASA, it “will make its rich content knowledge and other assets

\(^{140}\) CRS analysis of Office of Science and Technology Policy, “’78 Consolidated STEM Programs (Funding Redirected Outside of the Agency),” May 14, 2013.
available to these agencies,” and in addition, “the best NASA education and public engagement programs from throughout the agency will be awarded funding [from the NASA Office of Education] through an internal competitive process.”\(^\text{141}\) Congressional reaction to this proposal has been mixed, and its impact on NASA has been of particular concern.\(^\text{142}\)

FY2014 Budget and Appropriations

Funding for the Office of Education is provided by NASA’s Education account (see Table 6). Among the education programs still included in the Administration’s FY2014 request for NASA are the National Space Grant College and Fellowship Program ($24 million), the Experimental Program to Stimulate Competitive Research (EPSCoR, $9 million), and the Minority University Research Education Program (MUREP, $30 million), all of which typically receive close congressional attention. In the past, other NASA accounts funded as much as half of NASA’s education activities. In most cases, the FY2014 requests for those accounts do not include education funding.

Table 6. NASA Education Funding, FY2012-FY2014
(budget authority in millions of dollars)

<table>
<thead>
<tr>
<th>FY2012 Actual</th>
<th>FY2013 Enacted</th>
<th>FY2014 Request</th>
</tr>
</thead>
<tbody>
<tr>
<td>$136.1</td>
<td>$122.4</td>
<td>$94.2</td>
</tr>
</tbody>
</table>

Sources: FY2012 actual and FY2014 request from NASA’s FY2014 congressional budget justification. FY2013 enacted from P.L. 113-6 and explanatory statement, *Congressional Record*, March 11, 2013, pp. S1308-S1310. FY2013 enacted amounts are adjusted for the rescissions in P.L. 113-6, Sec. 3001 and Sec. 3004, but not for subsequent sequestration or reprogramming.

Conclusion

Although the 2010 authorization act set a new direction for NASA, especially in the area of human spaceflight, some advocates of other approaches remain unsatisfied, and many implementation issues remain. Among these:

- Can commercial services transport U.S. astronauts into Earth orbit, including to the International Space Station, cost-effectively and safely?
- For human spaceflight beyond Earth orbit, will the spacecraft now in development be ready on schedule, and how should they be used when operational?
- How will the needs of the human spaceflight program affect resources for NASA’s science missions, aeronautics research, and education programs?

\(^{141}\) Leland D. Melvin, Associate Administrator for Education, National Aeronautics and Space Administration, and Co-Chair of the Federal Coordination in STEM Education Task Force, testimony before the House Committee on Science, Space, and Technology, June 4, 2013.

\(^{142}\) See, for example, Member remarks at “STEM Education: The Administration’s Proposed Reorganization,” hearing of the House Committee on Science, Space, and Technology, June 4, 2013.
What is the appropriate level of NASA support for Earth science, planetary science, and other scientific fields?

In general, is NASA being asked to do more than it can afford?

As the 113th Congress conducts oversight of NASA and considers authorization and appropriations legislation, it will likely address many of these concerns.

Author Contact Information

Daniel Morgan
Specialist in Science and Technology Policy
dmorgan@crs.loc.gov, 7-5849